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We assume that it has an asymptotic expansion in ε as
ε→ 0 which is uniform in t̃:

dΨ

dt
= Ω(t̃, ε) =

∞
∑

s=0

εsΩ(s)(t̃) (4.18)

= Ω(0)(t̃) + εΩ(1)(t̃) + O(ε2). (4.19)

Equation (4.19) serves to define the phase variable Ψ
in terms the angular velocity variables Ω(s)(t̃), s =
0, 1, 2 . . ., up to constants of integration. One constant
of integration arises at each order in ε. Without loss
of generality we choose these constants of integration so
that

q(s)(0, t̃) = 0 (4.20)

for all s, t̃. Note that this does not restrict the final
solutions q(t, ε) and J(t, ε), as we show explicitly be-
low, because there are additional constants of integra-
tion that arise when solving for the functions q(s)(Ψ, t̃)
and J (s)(Ψ, t̃).

Roughly speaking, the meaning of these assumptions
is the following. The solution of the equations of motion
consists of a mapping from (t, ε) to (q, J). That map-
ping contains dynamics on two different timescales, the
dynamical timescale ∼ 1 and the slow timescale ∼ 1/ε.
The mapping can be uniquely written the composition of
two mappings

(t, ε) → (Ψ, t̃, ε) → (q, J), (4.21)

such that the first mapping contains all the fast dynam-
ics, and is characterized by the slowly evolving frequency
Ω(t̃, ε), and the second mapping contains dynamics only
on the slow timescale.

D. Results of the two-timescale analysis

By substituting the ansatz (4.15b) – (4.20) into the
equations of motion (4.1) we find that all of the assump-
tions made in the ansatz can be satisfied, and that all of
the expansion coefficients are uniquely determined, or-
der by order in ε. This derivation is given in Sec. IVE
below. Here we list the results obtained for the various
expansion coefficients up to the leading and sub-leading
orders.

1. Terminology for various orders of the approximation

We can combine the definitions just summarized to
obtain an explicit expansion for the quantity of most in-
terest, the angle variable q as a function of time. From
the periodicity condition (4.17a) it follows that the func-
tion q(0)(Ψ, t̃) can be written as Ψ+ q̄(0)(Ψ, t̃) where q̄(0)

is a periodic function of Ψ. [We shall see that q̄(0) in fact

vanishes, cf. Eq. (4.27) below.] From the definitions (3.3)
and (4.19), we can write the phase variable Ψ as

Ψ =
1

ε
ψ(0)(t̃) + ψ(1)(t̃) + εψ(2)(t̃) + O(ε2), (4.22)

where the functions ψ(s)(t̃) are defined by

ψ(s)(t̃) =

∫ t̃

dt̃′Ω(s)(t̃′). (4.23)

Inserting this into the expansion (4.15a) of q and using
the above expression for q(0) gives

q(t, ε) =
1

ε
ψ(0)(t̃) +

[

ψ(1)(t̃) + q̄(0)(Ψ, t̃)
]

+ε
[

ψ(2)(t̃) + q(1)(Ψ, t̃)
]

+ O(ε2). (4.24)

We will call the leading order, O(1/ε) term in Eq. (4.24)
the adiabatic approximation, the sub-leading O(1) term
the post-1-adiabatic term, the next O(ε) term the post-2-
adiabatic term, etc. This choice of terminology is moti-
vated by the terminology used in post-Newtonian theory.

It is important to note that the expansion in powers
of ε in Eq. (4.24) is not a straightforward power series
expansion at fixed t̃, since the variable Ψ depends on ε.
[The precise definition of the expansion of the solution
which we are using is given by Eqs. (4.15a) – (4.20).]
Nevertheless, the expansion (4.24) as written correctly
captures the ε dependence of the secular pieces of the
solution, since the functions q̄(0) and q(1) are periodic
functions of Ψ and so have no secular pieces.

2. Adiabatic Order

First, the zeroth order action variable is given by

J (0)(Ψ, t̃) = J (0)(t̃), (4.25)

where J (0) satisfies the differential equation

dJ (0)(t̃)

dt̃
= G(1)

0 [J (0)(t̃), t̃]. (4.26)

Here the right hand side denotes the average over q of
the forcing term G(1)[q,J (0)(t̃), t̃], cf. Eqs. (4.6) above.
The zeroth order angle variable is given by

q(0)(Ψ, t̃) = Ψ, (4.27)

and the angular velocity Ω that defines the phase variable
Ψ is given to zeroth order by

Ω(0)(t̃) = ω[J (0)(t̃), t̃]. (4.28)

Note that this approximation is equivalent to the follow-
ing simple prescription: (i) Truncate the equations of
motion (4.1) to the leading order in ε:

q̇(t) = ω(J, t̃) + εg(1)(q, J, t̃), (4.29a)

J̇(t) = εG(1)(q, J, t̃); (4.29b)

Corrections to orbital phase have 
contributions at adiabatic (1/ε) 
order involving (time averaged) 
first-order metric perturbation. 
Post-1-adiabatic order includes 
contributions from remaining 
first-order perturbation and from 
second-order metric perturbation. 
[Hinderer & Flanagan, Phys. Rev. D78, 064028]



Self-force approach
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✤ Foundations and formalism by now well understood (talks by A. Harte, P. 
Taylor).

✤ Solve the coupled system of equations for the motion of a point particle and 
its retarded field.

✤ Regularise retarded field to obtain finite regular field.
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Formal prescription at second order
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✤ System is coupled: the field is sourced by the past worldline 
and the worldline accelerates due to the field => delay 
differential equation. 

✤ Self-force is gauge dependent.
✤ δ-function sources difficult to  

handle numerically; retarded  
field diverges like r-1.

✤ Second order field sourced by  
first order field and more singular (r-2).

Why is calculating the self-force 
so hard?
Several considerations arise when trying to turn this formal 
prescription into a practical numerical scheme:



Self-force computation strategies

✤ Several methods have emerged for computing          , dealing with the 
numerical issues of point sources, singular fields.

✤ These broadly fall into three different categories (+ dissipative approx)
Mode-sum
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Worldline convolution



✤ MiSaTaQuWa equation gives the regularised self-force in terms 
of local components and a tail term.  
 

✤ Local terms are easily calculated.

✤ Tail contains contribution to the self-force from the past.

✤ If we can compute the Green function along the world-line, 
then we’re done: just integrate this to get the regularised self-
force for any orbit.

Worldline convolution

f

a
= (local terms) + lim

✏!0
q

2

Z ⌧�✏

�1
ra

Gret(x, x
0
)d⌧

0



Matched expansions

✤ Compute Green function using  
matched asymptotic expansions.

✤ Expansions for recent past  
(quasilocal) and distant past.

✤ Recent past - series expansion  
of Hadamard form; distant past -  
quasi-normal modes + branch-cut  
or “numerical Gaussian” or  
real-frequency integration.

✤ Stitch expansions in overlapping  
matching region.

Worldline of the particle

Current location of the particle - z(τ)

Matching point - z(τ -Δτ)

q2

� �

����
�aGretd� ⇥

Quasilocal integral back Δτ along the worldline

q2

� ����

�⇤
�aGretd� ⇥

Integral outside quasilocal region

Boundary of normal neighborhood where 

Hadamard parametrix is valid





Worldline convolution

✤ Advantages:
✤ Only need to compute the 

Green function once and we 
have the self-force for all orbits.

✤ Avoids numerical cancellation 
by directly computing the 
regularised field.

✤ May yield geometric insight 
(see talk by J. Thornburg).

✤ Green function can be applied 
to other problems.

✤ Disadvantages:
✤ Computing the Green function 

can be hard.
✤ Have to compute the Green 

function for all pairs of points x 
and x’ (see talk by C. Galley).

✤ Not naturally suited to self-
consistent evolution (see talk by 
C. Galley).

✤ Second order not so well 
understood (see talk by C. 
Galley).



Mode-sum regularisation



✤ Retarded field diverges close to the world-line.
✤ Decompose into spherical harmonic modes, the singularity is 

“smeared out” over a 2-sphere and each l,m mode is finite.  

✤ Need to subtract “regularisation parameters” to render the sum 
over modes finite. [L. Barack and A. Ori, Phys. Rev. D 61, 061502]

Mode-sum regularisation
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✤ Solve a 2D wave equation for each l,m mode

✤ Similar equations for electromagnetic and gravitational cases.

✤ Solution can be found in time domain as either 1+1D or 
characteristic evolution. δ-function needs careful treatment through 
particular finite differencing schemes/multi-domain methods.

✤ In the frequency domain this becomes an ordinary differential 
equation for each l,m,ω. This is particularly convenient for orbits 
where the number of frequencies is small (e.g. circular orbits). δ-
function  appears as matching condition between two 
homogeneous solutions.

Mode-sum regularisation
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✤ In order to regularise, decompose        into spherical/spheroidal/
spin-weighted spherical/spin-weighted spheroidal harmonic modes  
 
 
 
and subtract mode by mode.

✤ Typically only know        approximately as an expansion for large l.
✤ Coefficients of this expansion are known as regularisation parameters.
✤ Compute a regularised self-force by subtracting regularisation 

parameters from unregularised self-force 

Mode-sum regularisation
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Mode-sum regularisation
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Mode-sum regularisation
✤ Advantages:

✤ Suitable for fast, high-
accuracy frequency domain 
calculations (talks by M. van 
de Meent, L. Barack, 
P. Giudice, D. Bini, C. 
Kavanagh).

✤ In time domain leads to fast, 
accurate 1+1D evolutions.

✤ Relatively easy to implement.

✤ Disadvantages:
✤ Ill-suited to unbound or 

highly eccentric orbits (see 
talk by S. Hopper).

✤ Ill-suited to Kerr due to use of 
spherical harmonics (talks by 
C. Kavanagh, M. van de 
Meent).

✤ No clear extension to second 
order (see talk by J. Moxon).

✤ Not naturally suited to self-
consistent evolution  
(see talk by J. Moxon).



Effective source regularisation



✤ Derive an evolution equation for  
[Barack and Golbourn (2007), Detweiler and Vega (2008)] 

✤ Always work with        instead of     . 

✤ No distributional sources and no 
singular fields. 

✤ If       is chosen appropriately, then 
we can directly use        in the 
equations of motion.

Effective source regularisation
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✤ If        is exactly the Detweiler-
Whiting singular field,       is a 
solution of the homogeneous 
wave equation.

✤ If        is only approximately the 
Detweiler-Whiting singular 
field, then the equation for        
has an effective source, S. 

✤ S typically finite, but of limited 
differentiability on worldline.

Effective source regularisation

�R

�R

�S

�S



Effective source regularisation

✤ Advantages:
✤ Everything is finite. No 

distributional sources or 
singular fields.

✤ Does not rely on any 
underlying symmetry. Can be 
applied to generic orbits in 
generic spacetimes (see talk 
by J. Thornburg).

✤ Naturally suited to self-
consistent evolution (see talk 
by P. Diener).

✤ Works at second order (see 
talk by A. Pound)

✤ Disadvantages:
✤ Relatively costly 

computationally when 
evolved in 2+1D or 3+1D (see 
talks by P. Diener, J. 
Thornburg).

✤ Effective source is often a very 
complicated expression (see 
talk by J. Thornburg).

✤ Problems with evolving 
Lorenz gauge metric 
perturbations in time domain.



Results



Case Worldline Mode-sum E↵ective Source

S
ca
la
r

S
ch
w
ar
zs
ch
il
d circular (apprx) [59];

generic
(quasilocal) [67, 68];
generic [69–71];
static [72];
accelerated [73];

radial [74];
circular [75–78];
eccentric [79–83];
static [72];

circular [56, 57, 65,
84–86];
eccentric [87];
evolving [88];

K
er
r generic [68];

accelerated [73];

circular [89];
equatorial [90, 91];
inclined circular [92];
accelerated [93];
static [94, 95];

circular [96];
eccentric [97];

E
M

S
ch
w
ar
zs
ch
il
d

static [72];

static [72];
eccentric [82, 98];
static (Schwarzschild-
de Sitter) [99];
radial (Reissner-
Nordström) [100];

—

K
er
r

—
equatorial [90];
accelerated [93];

—

G
ra
vi
ty

S
ch
w
ar
zs
ch
il
d

generic
(quasilocal) [101];

radial [102];
circular [103–111];
eccentric [82, 112–
120];
osculating [121];

circular [122];

K
er
r circular

(quasilocal) [59];
branch cut [123];

equatorial [90];
accelerated [93];
circular [119, 124];

circular [125];
generic [126];

Table 1: Summary of regularization methods employed by self-force calcu-
lations in black hole spacetimes.

7

Table from: B. Wardell, Prog. Theor. Phys. 179
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FIG. 9. This figure shows the self-force for the e9 configuration, which has (a, p, e) = (0.99, 7M, 0.9). In the time-domain
plots (left and center columns) the central |t|  175M around periastron (marked by the vertical lines) is plotted at an
expanded horizontal scale. The self-force loops (right column) are plotted using a logarithmic radial scale. Notice the many
wiggles in the self-force on the outgoing leg of the orbit; we discuss these in section III E. Because the dissipative-conservative
decomposition (2.69) and (2.70) is non-local, the dissipative and conservative parts of the self-force also show wiggles before
periastron.

High-order expansions of the Detweiler-Whiting singular field
in Schwarzschild spacetime
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The self-field of a charged particle has a singular component that diverges at the particle. We
use both coordinate and covariant approaches to compute an expansion of this singular field for
particles in generic geodesic orbits about a Schwarzschild black hole for scalar, electromagnetic and
gravitational cases. We check that both approaches yield identical results and give, as an application,
the calculation of previously unknown mode-sum regularisation parameters.

In the so-called mode-sum regularization approach to self-force calculations, each mode of the
retarded field is finite, while their sum diverges. The sum may be rendered finite and convergent
by the subtraction of appropriate regularization parameters. Higher order parameters lead to faster
convergence in the mode-sum. To demonstrate the significant benefit that they yield, we use our
newly derived parameters to calculate a highly accurate value of Fr = 0.000013784482575667959(3)
for the self-force on a scalar particle in a circular orbit around a Schwarzschild black hole.

Finally, as a second example application of our high-order expansions, we compute high-order
expressions for use in the e↵ective source approach to self-force calculations.

I. INTRODUCTION

The notion of a self-force has a long history in physics. Early work led to the derivation of the Abraham-Lorentz-
Dirac [1] formula for the radiation reaction force on an accelerating point electric charge moving in a flat spacetime.
In the 1960s, DeWitt and Brehme [2] derived the curved spacetime equivalent, and a correction was later provided
by Hobbs [3]. For a comprehensive review of the self-force problem, see Refs. [4–6].

With the advent of gravitational wave astronomy, the past two decades have seen a surge in interest in the self-force
problem. This has been motivated by the study of so-called Extreme Mass Ratio Inspiral (EMRI) systems. These
binary systems – consisting of a compact object of ⇠ 1 solar mass spiralling into a massive black hole of ⇠ 106 solar
masses – are one of the most proimising candidates for study by planned space-based gravitational wave detectors
[7–13]. The nature of interferometric gravitational wave detectors is that unlike traditional electromagnetic spectrum
telescopes they are not directional; instead they see all directions at once. As a result, a crucial component of any
observation is the use of data analysis techniques such as matched filtering to disentangle the desired signal from
the noise. This, in turn, requires an accurate model of the signal one expects to see. This is even more true given
the recent proposals for the eLISA/NGO detector [14] (which will have a reduced sensitivity compared to LISA, the
previously proposed space-based gravitational wave detector) will mean that accurate waveform models are all the
more crucial.

The past two decades have seen new derivations of the equations of motion of a point charge moving in a curved
spacetime; this was first done in the gravitational charge case by Mino, Sasaki and Tanaka [15] and Quinn and
Wald [16] and in the minimally coupled scalar charge case by Quinn [17]. Since then, there have been significant
achievements in putting these derivations on a firmer footing. The use of distributional sources in Einsteins equations
is known to be problematic [18]. Nevertheless, with su�cient care they have proven to be a useful practical tool
in many cases [19, 20]. In the case of the self-force problem recent derivations have avoided the introduction of
distributional sources altogether through the use of matched asymptotic expansions and careful limiting procedures
[21–26]. At first perturbative order it is satisfying that these more rigorous derivations reproduce the same equations
of motion as one would obtain using distributional sources. Nevertheless, it is likely that these more rigorous methods
are required to advance to second perturbative order [27–31] and beyond [32–34].
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In the 1960s, DeWitt and Brehme [2] derived the curved spacetime equivalent, and a correction was later provided
by Hobbs [3]. For a comprehensive review of the self-force problem, see Refs. [4–6].

With the advent of gravitational wave astronomy, the past two decades have seen a surge in interest in the self-force
problem. This has been motivated by the study of so-called Extreme Mass Ratio Inspiral (EMRI) systems. These
binary systems – consisting of a compact object of ⇠ 1 solar mass spiralling into a massive black hole of ⇠ 106 solar
masses – are one of the most proimising candidates for study by planned space-based gravitational wave detectors
[7–13]. The nature of interferometric gravitational wave detectors is that unlike traditional electromagnetic spectrum
telescopes they are not directional; instead they see all directions at once. As a result, a crucial component of any
observation is the use of data analysis techniques such as matched filtering to disentangle the desired signal from
the noise. This, in turn, requires an accurate model of the signal one expects to see. This is even more true given
the recent proposals for the eLISA/NGO detector [14] (which will have a reduced sensitivity compared to LISA, the
previously proposed space-based gravitational wave detector) will mean that accurate waveform models are all the
more crucial.

The past two decades have seen new derivations of the equations of motion of a point charge moving in a curved
spacetime; this was first done in the gravitational charge case by Mino, Sasaki and Tanaka [15] and Quinn and
Wald [16] and in the minimally coupled scalar charge case by Quinn [17]. Since then, there have been significant
achievements in putting these derivations on a firmer footing. The use of distributional sources in Einsteins equations
is known to be problematic [18]. Nevertheless, with su�cient care they have proven to be a useful practical tool
in many cases [19, 20]. In the case of the self-force problem recent derivations have avoided the introduction of
distributional sources altogether through the use of matched asymptotic expansions and careful limiting procedures
[21–26]. At first perturbative order it is satisfying that these more rigorous derivations reproduce the same equations
of motion as one would obtain using distributional sources. Nevertheless, it is likely that these more rigorous methods
are required to advance to second perturbative order [27–31] and beyond [32–34].
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Results from self-force calculations

✤ Self-force methods produce 
highly accurate  
(>20 significant digits) results

✤ Probe strong-field regime, 
highly eccentric orbits (talks by 
J. Thornburg, M. Colleoni)

✤ Potential for “exact” results: 
“experimental mathematics”

✤ “Exact” functional methods

✤ Highly spinning black holes.

ar
X

iv
:1

50
3.

02
63

8v
1 

 [g
r-

qc
]  

9 
M

ar
 2

01
5

Experimental mathematics meets gravitational self-force
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It is now possible to compute linear in mass-ratio terms in the post-Newtonian (PN) expansion
for compact binaries to very high orders using black hole perturbation theory applied to various
invariants. For instance, a computation of the redshift invariant of a point particle in a circular
orbit about a black hole in linear perturbation theory gives the linear-in-mass-ratio portion of the
binding energy of a circular binary with arbitrary mass ratio. This binding energy, in turn, encodes
the system’s conservative dynamics. We give a method for extracting the analytic forms of these
post-Newtonian coefficients from high-accuracy numerical data using experimental mathematics
techniques, notably an integer relation algorithm. Such methods should be particularly important
when the calculations progress to the considerably more difficult case of perturbations of the Kerr
metric. As an example, we apply this method to the redshift invariant in Schwarzschild. Here we
obtain analytic coefficients to 12.5PN, and higher-order terms in mixed analytic-numerical form
to 21.5PN, including analytic forms for the complete 13.5PN coefficient, and all the logarithmic
terms at 13PN. We have computed the individual modes to over 5000 digits, of which we use at
most 1240 in the present calculation. At these high orders, an individual coefficient can have over
30 terms, including a wide variety of transcendental numbers, when written out in full. We are
still able to obtain analytic forms for such coefficients from the numerical data through a careful
study of the structure of the expansion. The structure we find also allows us to predict certain
“leading logarithm”-type contributions to all orders. The additional terms in the expansion we
obtain improve the accuracy of the PN series for the redshift observable, even in the very strong-
field regime inside the innermost stable circular orbit, particularly when combined with exponential
resummation.

PACS numbers: 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION AND SUMMARY

Coalescing compact binaries are a promising source
of gravitational waves, and ground-based gravitational
wave interferometers will start operating at sensitivities
at which detections can reasonably be expected as early
as later this year. In order to successfully detect these
faint signals in the detector’s noise—and, more impor-
tantly, to be able to infer the properties of the system
from the detected signal—it is necessary to have highly
accurate templates that model the gravitational waves
from the inspiralling binaries. Thus, for more than a
decade now, different approaches have been developed
to model relativistic binary systems. The oldest one of
these, the post-Newtonian (PN) framework, can model
such systems when the two bodies are far from one an-
other, so their velocities are relatively slow (see [1] for
a review of these methods and results). Numerical rel-
ativity, on the other hand, is able to model compara-
ble mass ratio binaries in the strong gravitational field
regime, but has difficulties with large mass ratios, large
separations, and very long waveforms (but see [2–4] for
recent advances). Another approach is gravitational self-
force theory, which models binaries with extreme mass-
ratios, where one has a small body that is about a million
times lighter than the central super-massive black hole

into which it is inspiralling [5, 6].

A more recent approach, effective-one-body (EOB)
theory, maps the binary’s motion to that of a particle
moving in an effective metric, generalizing the Newtonian
reduced-mass treatment of the two-body problem [7, 8].
This theory encompasses information from the former
three approaches to calibrate the parameters that go into
the theory, which allows it to model a binary system of
any given mass-ratio. Of particular interest is the over-
lap region between the self-force and PN formalisms. In-
variant quantities calculated in this region are used to
calibrate the EOB parameters. One of those quantities
calculated in self-force theory is Detweiler’s redshift in-
variant, ∆U , the linear-in-mass-ratio correction to the
time component of the 4-velocity of the light compact
object [9]. The PN coefficients of ∆U are directly re-
lated to those of the linear-in-mass-ratio portion of the
binding energy and angular momentum of the binary, as
well as to the radial potential that is fundamental to the
EOB formalism, as was demonstrated in [10–15].

Computation of the PN coefficients of∆U started with
Detweiler’s original paper [9] (to 2PN; nPN corresponds
to an accuracy of v2n, where v is the orbital velocity of
the small body), and continued analytically through 3PN
in [16], with terms through 5PN obtained from a numer-
ical matching in [17] (where the logarithmic terms were
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It is now possible to compute linear in mass-ratio terms in the post-Newtonian (PN) expansion
for compact binaries to very high orders using black hole perturbation theory applied to various
invariants. For instance, a computation of the redshift invariant of a point particle in a circular
orbit about a black hole in linear perturbation theory gives the linear-in-mass-ratio portion of the
binding energy of a circular binary with arbitrary mass ratio. This binding energy, in turn, encodes
the system’s conservative dynamics. We give a method for extracting the analytic forms of these
post-Newtonian coefficients from high-accuracy numerical data using experimental mathematics
techniques, notably an integer relation algorithm. Such methods should be particularly important
when the calculations progress to the considerably more difficult case of perturbations of the Kerr
metric. As an example, we apply this method to the redshift invariant in Schwarzschild. Here we
obtain analytic coefficients to 12.5PN, and higher-order terms in mixed analytic-numerical form
to 21.5PN, including analytic forms for the complete 13.5PN coefficient, and all the logarithmic
terms at 13PN. We have computed the individual modes to over 5000 digits, of which we use at
most 1240 in the present calculation. At these high orders, an individual coefficient can have over
30 terms, including a wide variety of transcendental numbers, when written out in full. We are
still able to obtain analytic forms for such coefficients from the numerical data through a careful
study of the structure of the expansion. The structure we find also allows us to predict certain
“leading logarithm”-type contributions to all orders. The additional terms in the expansion we
obtain improve the accuracy of the PN series for the redshift observable, even in the very strong-
field regime inside the innermost stable circular orbit, particularly when combined with exponential
resummation.
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I. INTRODUCTION AND SUMMARY

Coalescing compact binaries are a promising source
of gravitational waves, and ground-based gravitational
wave interferometers will start operating at sensitivities
at which detections can reasonably be expected as early
as later this year. In order to successfully detect these
faint signals in the detector’s noise—and, more impor-
tantly, to be able to infer the properties of the system
from the detected signal—it is necessary to have highly
accurate templates that model the gravitational waves
from the inspiralling binaries. Thus, for more than a
decade now, different approaches have been developed
to model relativistic binary systems. The oldest one of
these, the post-Newtonian (PN) framework, can model
such systems when the two bodies are far from one an-
other, so their velocities are relatively slow (see [1] for
a review of these methods and results). Numerical rel-
ativity, on the other hand, is able to model compara-
ble mass ratio binaries in the strong gravitational field
regime, but has difficulties with large mass ratios, large
separations, and very long waveforms (but see [2–4] for
recent advances). Another approach is gravitational self-
force theory, which models binaries with extreme mass-
ratios, where one has a small body that is about a million
times lighter than the central super-massive black hole

into which it is inspiralling [5, 6].

A more recent approach, effective-one-body (EOB)
theory, maps the binary’s motion to that of a particle
moving in an effective metric, generalizing the Newtonian
reduced-mass treatment of the two-body problem [7, 8].
This theory encompasses information from the former
three approaches to calibrate the parameters that go into
the theory, which allows it to model a binary system of
any given mass-ratio. Of particular interest is the over-
lap region between the self-force and PN formalisms. In-
variant quantities calculated in this region are used to
calibrate the EOB parameters. One of those quantities
calculated in self-force theory is Detweiler’s redshift in-
variant, ∆U , the linear-in-mass-ratio correction to the
time component of the 4-velocity of the light compact
object [9]. The PN coefficients of ∆U are directly re-
lated to those of the linear-in-mass-ratio portion of the
binding energy and angular momentum of the binary, as
well as to the radial potential that is fundamental to the
EOB formalism, as was demonstrated in [10–15].

Computation of the PN coefficients of∆U started with
Detweiler’s original paper [9] (to 2PN; nPN corresponds
to an accuracy of v2n, where v is the orbital velocity of
the small body), and continued analytically through 3PN
in [16], with terms through 5PN obtained from a numer-
ical matching in [17] (where the logarithmic terms were
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It is now possible to compute linear in mass-ratio terms in the post-Newtonian (PN) expansion
for compact binaries to very high orders using black hole perturbation theory applied to various
invariants. For instance, a computation of the redshift invariant of a point particle in a circular
orbit about a black hole in linear perturbation theory gives the linear-in-mass-ratio portion of the
binding energy of a circular binary with arbitrary mass ratio. This binding energy, in turn, encodes
the system’s conservative dynamics. We give a method for extracting the analytic forms of these
post-Newtonian coefficients from high-accuracy numerical data using experimental mathematics
techniques, notably an integer relation algorithm. Such methods should be particularly important
when the calculations progress to the considerably more difficult case of perturbations of the Kerr
metric. As an example, we apply this method to the redshift invariant in Schwarzschild. Here we
obtain analytic coefficients to 12.5PN, and higher-order terms in mixed analytic-numerical form
to 21.5PN, including analytic forms for the complete 13.5PN coefficient, and all the logarithmic
terms at 13PN. We have computed the individual modes to over 5000 digits, of which we use at
most 1240 in the present calculation. At these high orders, an individual coefficient can have over
30 terms, including a wide variety of transcendental numbers, when written out in full. We are
still able to obtain analytic forms for such coefficients from the numerical data through a careful
study of the structure of the expansion. The structure we find also allows us to predict certain
“leading logarithm”-type contributions to all orders. The additional terms in the expansion we
obtain improve the accuracy of the PN series for the redshift observable, even in the very strong-
field regime inside the innermost stable circular orbit, particularly when combined with exponential
resummation.
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I. INTRODUCTION AND SUMMARY

Coalescing compact binaries are a promising source
of gravitational waves, and ground-based gravitational
wave interferometers will start operating at sensitivities
at which detections can reasonably be expected as early
as later this year. In order to successfully detect these
faint signals in the detector’s noise—and, more impor-
tantly, to be able to infer the properties of the system
from the detected signal—it is necessary to have highly
accurate templates that model the gravitational waves
from the inspiralling binaries. Thus, for more than a
decade now, different approaches have been developed
to model relativistic binary systems. The oldest one of
these, the post-Newtonian (PN) framework, can model
such systems when the two bodies are far from one an-
other, so their velocities are relatively slow (see [1] for
a review of these methods and results). Numerical rel-
ativity, on the other hand, is able to model compara-
ble mass ratio binaries in the strong gravitational field
regime, but has difficulties with large mass ratios, large
separations, and very long waveforms (but see [2–4] for
recent advances). Another approach is gravitational self-
force theory, which models binaries with extreme mass-
ratios, where one has a small body that is about a million
times lighter than the central super-massive black hole

into which it is inspiralling [5, 6].

A more recent approach, effective-one-body (EOB)
theory, maps the binary’s motion to that of a particle
moving in an effective metric, generalizing the Newtonian
reduced-mass treatment of the two-body problem [7, 8].
This theory encompasses information from the former
three approaches to calibrate the parameters that go into
the theory, which allows it to model a binary system of
any given mass-ratio. Of particular interest is the over-
lap region between the self-force and PN formalisms. In-
variant quantities calculated in this region are used to
calibrate the EOB parameters. One of those quantities
calculated in self-force theory is Detweiler’s redshift in-
variant, ∆U , the linear-in-mass-ratio correction to the
time component of the 4-velocity of the light compact
object [9]. The PN coefficients of ∆U are directly re-
lated to those of the linear-in-mass-ratio portion of the
binding energy and angular momentum of the binary, as
well as to the radial potential that is fundamental to the
EOB formalism, as was demonstrated in [10–15].

Computation of the PN coefficients of∆U started with
Detweiler’s original paper [9] (to 2PN; nPN corresponds
to an accuracy of v2n, where v is the orbital velocity of
the small body), and continued analytically through 3PN
in [16], with terms through 5PN obtained from a numer-
ical matching in [17] (where the logarithmic terms were
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Analytic determination of high-order post-Newtonian self-force contributions to
gravitational spin precession
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Continuing our analytic computation of the first-order self-force contribution to the “geodetic”
spin precession frequency of a small spinning body orbiting a large (non-spinning) body we provide
the exact expressions of the tenth and tenth-and-a-half post-Newtonian terms. We also introduce a
new approach to the analytic computation of self-force regularization parameters based on a WKB
analysis of the radial and angular equations satisfied by the metric perturbations.

I. INTRODUCTION

The impending prospect of detecting gravitational-
wave signals from coalescing compact binary systems mo-
tivates renewed studies of the general relativistic dynam-
ics of binary systems made of spinning bodies. It has
been emphasized in Ref. [1] that a simple way of com-
puting (to linear order in each spin) the spin-dependent
interaction terms Hint = ΩΩΩSO

1 ·S1+ΩΩΩSO
2 ·S2 in the Hamil-

tonian of a binary system was to compute (when consid-
ering, say, the term linear in S1) the spin precession an-
gular velocity of S1 in the gravitational field generated by
the two masses m1,m2, and, eventually, the spin S2. In-
deed, this spin precession angular velocity (which can be
obtained by writing that S1 is parallely propagated along
the world line of m1) is simply equal to the coefficient
ΩΩΩSO

1 of S1 in Hint. On the other hand, it was recently re-
marked [2, 3] that, in the simple case of a binary moving
on circular orbits, the (z-component of the) spin preces-
sion, ΩSO

1 , could be expressed in terms of the norm |∇k|
of the covariant derivative of the helical Killing vector
k = ∂t + Ω∂φ characteristic of circular motions, namely

ΩSO
1 = Ω− |∇k| , (1.1)

where Ω denotes the orbital frequency. [The gauge-
invariant quantity |∇k| can be viewed as a first-
derivative-level generalization of Detweiler’s redshift in-
variant [4], which is expressible in terms of the norm |k|
of the Killing vector k.]
The gauge-invariant functional relation between ΩSO

1 ,
or equivalently |∇k|, and the orbital frequency Ω has
been recently studied (both numerically and analytically)
in Refs. [2, 3]. In particular, we have derived (as part
of a sequence of analytical gravitational self-force stud-
ies) in [3] the first-order self-force contribution (linear in
the mass ratio q = m1/m2 ≪ 1) to the “geodetic” spin
precession frequency ΩSO

1 to the eight-and-a-half post-
Newtonian (PN) order, i.e. up to terms of order y8.5

included, where

y =

(

Gm2Ω

c3

)2/3

(1.2)

is a convenient dimensionless frequency parameter of or-
der O(1/c2). [We henceforth use, for simplicity, units

where G = c = 1.] As in [3] we restrict ourselves here to
the case of a small spinning body m1,S1, orbiting a large
non-spinning body m2, S2 = 0.
The aim of the present note is to report on an ex-

tension of our previous analytical computation of spin
precession to the 10.5PN level, i.e. up to terms of order
y10.5 included. This extension was motivated by private
communications from Dolan et al. [5] who pointed out
apparent discrepancies (starting at level O(y7)) between
some of their high-accuracy numerical results (see Table
III in Ref. [6]) and our published 8.5PN analytical re-
sults. These discrepancies led us to carefully re-examine
our previous computations, and to push them to higher
PN orders. We so discovered that, though all our ba-
sic analytical building blocks were correct, their manip-
ulation by an algebraic software led to some instabili-
ties (due to the length of the analytical expressions at
high PN orders), that had led to a few errors in our fi-
nal results. More precisely, the rational term, among the
seven (transcendental) contributions to the coefficient of
y7, was incorrectly obtained, and, in the coefficient of
y8 (which contains fifteen different contributions), both
the rational term and the coefficient of π2 were incor-
rectly obtained. Correspondingly, there were errors in
the (rational) coefficients of y7 and y8 in the subtraction
term B(y). [See detailed results below.] After having
found these errors, corrected them, and communicated
the corrections to Dolan et al., the latter authors con-
firmed that our O(y8) corrected results were now in satis-
factory agreement with their high-accuracy numerical re-
sults. [More recently, Shah [7] independently pointed out
to us the three discrepant coefficients mentioned above,
which we had already analytically derived, and which he
and his collaborators had independently derived by using
the numerical-analytical method of Ref. [8].]

II. TECHNICAL REMINDERS

Let us recall the notation and main technical results of
Ref. [3] that we shall need to express our new results. We
consider a two-body system of masses m1 and m2, mov-
ing along circular orbits, in the limit m1 ≪ m2. Here we
only endow the small mass m1 with spin S1, keeping the
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Analytical high-order post-Newtonian expansions for extreme mass ratio binaries
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We present analytic computations of gauge invariant quantities for a point mass in a circular
orbit around a Schwarzschild black hole, giving results up to 15.5 post-Newtonian order in this
paper and up to 21.5 post-Newtonian order in an online repository. Our calculation is based on
the functional series method of Mano, Suzuki and Takasugi (MST) and a recent series of results
by Bini and Damour. We develop an optimised method for generating post-Newtonian expansions
of the MST series, enabling significantly faster computations. We also clarify the structure of the
expansions for large values of ℓ, and in doing so develop an efficient new method for generating the
MST renormalised angular momentum, ν.

I. INTRODUCTION

The equations of motion of an extreme mass ratio bi-
nary system — for example, a solar mass black hole or
neutron star in orbit around a massive black hole —
are well approximated by a perturbative expansion of
Einstein’s equations. With q = m/M (the ratio of the
smaller mass to the the larger one) as an expansion pa-
rameter, at zero-th order in q one obtains geodesic mo-
tion in the spacetime of the larger mass. The order q
corrections are commonly referred to as the first order
self-force and are obtained by solving the linearized Ein-
stein equations around the background spacetime of the
larger mass, M .

An alternative approach to the two-body problem —
valid when the constituents are far apart — is the post-
Newtonian approximation, which expands the Einstein
equations in v2/c2, where v is a representative velocity
and c is the speed of light. In the context of binary
systems, the post-Newtonian expansion maps onto an
expansion in 1/r, where r is the separation of the two
objects.

Recent years have seen synergistic development of the
post-Newtonian and perturbative approaches to the ex-
treme mass ratio binary problem. Comparisons of gauge
invariant quantities computed in the two approaches have
gone beyond simple (but valuable) crosschecks [1]. They
have enabled impressive developments which would have
been difficult, if not impossible, to achieve in each theory
on its own. For example, on the post-Newtonian end self-
force results have produced predictions of previously un-
known terms in the post-Newtonian expansion [2–8]. On
the self-force end, comparisons with post-Newtonian cal-
culations and with Numerical Relativity simulations have
given insight into the higher-order perturbative correc-
tions not included in the self-force approximation [9, 10].

Traditional approaches to the perturbative treatment
of Einstein’s equations have relied on numerical solutions
of differential equations as a means to obtaining the lin-
earized metric perturbation. More recently, alternative,
functional methods have emerged as a compelling ap-

proach to obtaining the linearized metric perturbation.
In particular, there has been a surge of interest in ap-
proaches pioneered by the work of Mano, Suzuki and
Takasugi (MST) [11], in which one writes solutions of
the linearized Einstein equations in terms of a rapidly
convergent series of hypergeometric functions.
Functional methods have the distinct advantage of giv-

ing a representation in terms of exact quantities, rather
than a truncated numerical value. Since modern com-
puter algebra systems can efficiently evaluate hyperge-
ometric functions to an essentially arbitrary number of
digits, a numerical approach built on top of functional
methods is a powerful tool. Indeed, a parallel pair
of works by Shah and Pound [12], and by Johnson-
McDaniel, Shah and Whiting [13] has used numerical
functional methods to simultaneously obtain many of the
same results as we present here. Reassuringly, a direct
comparison of our results with those of [12, 13] has shown
the two to be in perfect agreement [14], providing a strong
independent check to both calculations.
In this work, we compute post-Newtonian expansions

of the linearized metric pertubation for a circular-orbit
binary system, ignoring spin terms, up to order y21.5,
where 1/y = (MΩ)−2/3 is an invariant measure of the
radius defined through the orbital frequency, Ω. From
this, we compute very high order post-Newtonian ap-
proximations of all known gauge invariant quantities up
to quadrupole order. Our approach works in the Regge-
Wheeler gauge (with a transformation to the asymptot-
ically flat post-Newtonian gauge) and is fundamentally
based on functional methods, but avoids any numerical
evaluation (and the associated numerical truncation). In-
stead, our method builds on a series of developments by
Bini and Damour [15–18]. Much of the calculation de-
scribed here relies heavily on the methods they devel-
oped, combined with some modifications which allow the
calculation to be efficiently taken to much higher post-
Newtonian order.
The layout of the paper is as follows. In Sec. II we

give details of our method, including an MST-based ex-
pansion for low ℓ-multipole modes and an exact large-ℓ
approach for the higher multipole modes. In Sec. III we
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We model the inspiral of a compact object into a more massive black hole rotating very near the
theoretical maximum. We find that once the body enters the near-horizon regime the gravitational
radiation is characterized by a constant frequency, equal to (twice) the horizon frequency, with an
exponentially damped profile. This contrasts with the usual “chirping” behavior and, if detected,
would constitute a “smoking gun” for a near-extremal black hole in nature.

I. INTRODUCTION

General relativity imposes a hard upper limit on how
fast a black hole can rotate. For a black hole of mass M ,
the angular momentum J must satisfy

J  GM2/c, (1)

where G is Newton’s constant and c is the speed of light
(both hereafter set to unity). Above this value, the event
horizon disappears and the spacetime contains a naked
singularity. It is impossible to spin up a black hole above
this limit with any continuous process featuring reason-
able matter [1], and there is much evidence in favor of the
“cosmic censorship conjecture” [2] that no generic initial
data can produce a naked singularity.

Black holes that saturate the bound (1) are known as
extremal. More generally, extremal black holes are de-
fined as those with zero Hawking temperature. Extremal
black holes play a key role in many theoretical arguments
investigating the nature of classical and quantum gravity,
such as cosmic censorship [3] and the quantum nature of
black hole entropy [4]. They have near-horizon regions
that possess additional emergent symmetries [5] and may
be governed by a holographic duality [6] in the spirit of
AdS/CFT [7]. At least in parameter space, they are a
hair’s breath from being naked singularities, the existence
of which would (in principle) allow experimental study of
quantum gravity from a distance. In light of their basic
role in theoretical work, it would be fascinating to dis-
cover an extremal black hole in nature.

In this paper we demonstrate a potential means of dis-
covery via a “smoking gun”: a signal which, if observed,
would conclusively establish the presence of a black hole
spinning at or extremely near the fundamental limit. We
consider the gravitational radiation from the inspiral of a
body into a more massive black hole. In the non-extremal
case, the wave amplitude and frequency increase slowly
in time until cutting o↵ rapidly when the compact ob-
ject reaches the innermost stable circular orbit (ISCO)
and plunges into the black hole. If the black hole is
rapidly spinning, however, there is a new, near-horizon

h+⨯(D/μ)

5PGW⨯(M/μ)2

-1.0

-0.5

0.0

0.5

1.0

Ordinary

0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

t⨯(μ/M2)

Near-horizon
regime

Near-extremal

FIG. 1. Gravitational waveforms from equatorial, quasi-
circular inspiral into ordinary and near-extremal black holes.
The black hole spins are a/M = 0.97 and a/M = 1 � 10�9,
respectively. We show the h+ component for a system viewed
face-on. The waveform begins when the particle crosses
r = 3.3M and ends when the particle reaches the ISCO; we do
not model the plunge or ringdown phase of the inspiral in this
work. The individual sinusoidal oscillations of the waveform
are too small to see on this scale (where we have assumed
a small mass-ratio). We also show (five times) the radiated
power, PGW. The masses of the primary and secondary are
denoted by M and µ, respectively, the distance to the binary
is D.

phase of the inspiral where the amplitude begins to de-

crease in time and the frequency saturates at the hori-
zon frequency – see Fig. 1. This can be understood from
the fact that the ISCO of a rapidly spinning black hole
is close to the horizon and allows access to the near-
horizon regime, where the gravitational-wave emission is
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Invariants of a perturbed black hole

Redshift invariant (Detweiler ’08; Akcay, et. al. ’15)2008
Shift in the innermost stable circular orbit (Barack & Sago)2009

Geodetic spin-precession (Dolan, et al.)2014

Tidal eigenvalues (Dolan, et al.)
2015

Octupolar invariants (Nolan, et al.)

Periastron advance, mildly-eccentric orbit (Barack & Sago)

Second order redshift invariant (Pound, et al.; Detweiler, et al. - 
see talks by A. Pound, A. Heffernan, H. Chen, J. Thompson)

2016?



Classification: conservative and 
dissipative invariants

 ∇n Conservative Dissipative

0th ∆U
(redshift)

1st ∆ψ
(geodetic spin precession)

F3

(fluxes of radiation)

2nd E11, E22, B12

(tidal tensor)
B23

(tidal tensor)

3rd E111, E122, B211, B222

(octupoles)
E311, E322, B123

(octupoles)



Extracting information from self-
force calculations

Dolan, et. al.
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Orbital 
evolution

✤ Once we have the self-force, we 
need to use it to evolve orbits.

✤ “Geodesic” approximation vs. 
self-consistent evolution.

✤ Inclusion of spin effects.
✤ Talks by T. Osburn, P. Diener, 

C. Galley, S. Isoyama, N. 
Warburton, R. Fujita.



A lot done, more to do…
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FIG. 1. (Color online) Orbits for neutral and charged particles start-
ing at p = 7.2, e = 0.5. The orbital evolution is started close to apas-
tron (at t = t1) and the dots represent events at times t1 = 400M, t2 =
600M, t3 = 1100M, t4 = 1300M, t5 = 1800M and t6 = 2043.8M, the
instant of plunge.. The coordinates {x,y} = {r cosf ,r sinf} are
Cartesian coordinates in the equatorial plane.

computed: fa ⌘ q̄—a FR, where q̄ is the charge of the particle.
The effective source S(xa |za(t),ua(t)) for FR is C0 (contin-
uous but not differentiable) by construction at the location of
the particle, in contrast to the traditional d -function source for
point particles. Like the d -function source, S depends on the
particle’s position za(t) and four-velocity ua(t). (A simi-
lar approach is independently being pursued in Ref. [16], the
main difference there being that it uses a mode decomposition
in the azimuthal direction). The strategy rests on Detweiler
and Whiting’s insight [17] that there exists a smooth solution
to the vacuum field equation to which the self-force can be
fully attributed. This solution is just the difference between
the retarded field Fret and a locally constructible singular field
FS which is the curved spacetime analogue of a “Coulomb”
field that does not contribute to the self-force. Our approxima-
tion to the regular field FR differs from the smooth Detweiler-
Whiting solution by terms that scale as O(r3) as r ! 0, where
r is some appropriate measure of distance from the particle.
It is thus only a C2 approximation to the Detweiler-Whiting
vacuum solution, but it nevertheless gives the same self-force.
The limited differentiability of FR comes from the inability to
write down an explicit expression for the full singular field
from which the effective source is constructed. Generally,
only approximate expressions for FS are known[11]. The
construction of our expression for S is described in detail else-
where [18].

With the effective source at hand, one needs to solve the
following system of equations:

⇤FR = S(x|z(t),u(t)) (1)
Dua

dt
= aa =

q̄
m(t)

(gab +ua ub )—b FR (2)

dm
dt

=�q̄ub —b FR, (3)

where m(t) is the rest mass of the particle. Quinn [19] found
that the rest mass is dynamically modified by the component
of the self-force tangent to the four-velocity; this is reflected
in Eq. (3). In all our simulations, we take the initial rest mass
m(t = 0) to be M. Because of the way S is constructed, FR

is equal to the retarded field in the wavezone. Thus, by solv-

-0.001
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 0.011

 0.015

 0  500  1000  1500  2000  2500

�
 / 

q

Time (M)

q=1/8 q=1/16 q=1/32 q=1/64

FIG. 2. (Color online) Waveforms from self-consistently evolved
orbits as detected by an observer located in the orbital plane at I +.

ing the system of equations above, one obtains not only self-
forced orbits but their corresponding waveforms as well (see
Figs. 1 and 2).

We recently developed code that solves Eq. (1) for a spec-
ified geodesic in the Schwarzschild spacetime [20]. Compar-
ing with Ref. [12] we find that our main source of error is high
frequency noise due to nonsmoothness of the effective source
in the vicinity of the worldline. Most of the time the ampli-
tude of this noise is small but it reaches a peak of about 2% of
the value of the self-force at periapsis.

We then evolve self-consistent orbits by supplementing the
scalar field evolution with an orbit integrator. Together they
allow solving Eqs. (1), (2) and (3) simultaneously. We deal
with the particle motion in two ways: first by straightforward
integration of Eq. (2) and second by adopting the osculating
orbits framework described in Ref. [21]. The first method is
more general in that it allows us to track the motion of the par-
ticle all the way to the event horizon. On the other hand, the
second method, which works only for bound orbits, allows us
to more readily identify aspects of the evolution that would be
completely missed by methods relying on flux-averaging and
balance arguments. For the regimes in which both methods
are valid, we find the resulting orbits in excellent agreement.

Self-consistent orbits:– The spherical symmetry of the
Schwarzschild geometry implies that test-particle orbits may
always be described by motion in the q = p/2 plane. The or-
bits are then characterized by conserved quantities Ẽ and L̃,
the particle’s energy and angular momentum per unit mass,
respectively. Bound orbits are those for which Ẽ < 1 and L̃ �
2
p

3M. These possess two radial turning points r± (r� < r+),
the periapsis and apoapsis. Following Refs. [21, 22], these or-
bits can be parametrized in terms of a dimensionless semilatus
rectum p and eccentricity e, such that r± = pM/(1⌥ e). This
p–e parametrization is geometrically informative: p is a mea-
sure of the size of the orbit, while e is a measure of deviation
from circularity. We note, however, that it is meaningful only
for the space of bound orbits for which {Ẽ < 1, L̃ > 2

p
3M}

is mapped onto {0  e < 1, p � 6 + 2e}. The separatrix
p = 6+ 2e corresponds to unstable circular orbits and repre-
sents the boundary in p–e space separating bound from plung-
ing orbits.

Invariants for  
eccentric orbits

gab = g̊ab + h1
ab + h2
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Second order perturbation theory
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Second order conservative effects

U0(⌦) =
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Generalised redshift invariant for circular orbits
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Second order field equations

Dµ⌫ [h
R1] = �Dµ⌫ [h

S1]

Dµ⌫ [h
R2] = �Dµ⌫ [h

S2] + �2Rµ⌫ [h
1, h1]

�2R↵� [h, h] ⌘� 1
2h

µ⌫(2hµ(↵;�)⌫ � h↵�;µ⌫ � hµ⌫;↵�)

+ 1
4h

µ⌫
;↵hµ⌫;� + 1

2h
µ
�
;⌫(hµ↵;⌫ � h⌫↵;µ)

� 1
2 h̄

µ⌫
;⌫(2hµ(↵;�) � h↵�;µ)
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Challenges at 
Second order
✤ Second order gravitational self-

force will require high accuracy  
⇒ Frequency domain.

First order metric perturbation ~ 1/(r-r0)
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Challenges at 
Second order
✤ Second order gravitational self-

force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularisation.

First order modes ~ |r-r0|/(r-r0)
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Challenges at 
Second order
✤ Second order gravitational self-

force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularisation.

✤ Second order metric more 
singular. Second order perturbation ~ 1/(r-r0)2
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Challenges at 
Second order
✤ Second order gravitational self-

force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularisation.

✤ Second order metric more 
singular.

✤ Second order modes diverge 
logarithmically.

Second order modes ~ log|r-r0|
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Challenges at 
Second order
✤ Second order gravitational self-

force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularisation.

✤ Second order metric more 
singular.

✤ Second order modes diverge 
logarithmically.

✤ Avoid computing retarded field 
on world line ⇒ effective source.

Second order modes ~ log|r-r0|
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Towards second order self-force
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Practical, covariant puncture for second-order self-force calculations

Adam Pound and Jeremy Miller
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Accurately modeling an extreme-mass-ratio inspiral requires knowledge of the second-order gravita-
tional self-force on the inspiraling small object. Recently, numerical puncture schemes have been
formulated to calculate this force, and their essential analytical ingredients have been derived from first
principles. However, the “puncture,” a local representation of the small object’s self-field, in each of these
schemes has been presented only in a local coordinate system centered on the small object, while a
numerical implementation will require the puncture in coordinates covering the entire numerical domain. In
this paper we provide an explicit covariant self-field as a local expansion in terms of Synge’s world
function. The self-field is written in the Lorenz gauge, in an arbitrary vacuum background, and in forms
suitable for both self-consistent and Gralla-Wald-type representations of the object’s trajectory. We
illustrate the local expansion’s utility by sketching the procedure of constructing from it a numerically
practical puncture in any chosen coordinate system.
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I. INTRODUCTION

Observation of extreme-mass-ratio inspirals (EMRIs) is
a central plank in plans for a space-based gravitational-
wave detector [1]. EMRIs, in which a compact object of
mass m orbits about and eventually falls into a massive
black hole of mass M ≫ m, will offer a unique probe of
strong-field dynamics and a detailed map of the spacetime
geometry near a black hole. However, an inspiral occurs on
the very long dynamical time scale M2=m, and to extract
information about an inspiral from an observed waveform,
one will require a model that accurately relates the wave-
form to the motion over that long time. For a physically
relevant mass ratio m=M ¼ 10−6, this translates to requir-
ing an accurate model covering ∼106 wave cycles.
Because of the drastically dissimilar length scales in

these systems, numerical relativity cannot adequately
model them even on short time scales. And because of
the strong fields and large velocities in play, post-
Newtonian theory is inapplicable. Instead, the most promi-
nent method of tackling the problem has been to apply the
gravitational self-force formalism [2,3], in which the small
object is treated as the source of a perturbation hμν ∼m on
the background spacetime gμν of the large black hole, and
hμν exerts a force back on the small object, accelerating it
away from test-particle, geodesic motion in gμν. It has long
been known [4] that within this formalism, accurately
modeling an inspiral on the long time scale ∼M2=m
requires knowledge of the smaller object’s acceleration
to second order in m, meaning garden variety linear
perturbation theory is insufficient. The veracity of this
claim can be seen from a simple scaling argument: if the
small object’s acceleration contains an error of order
δa ∼m2=M3, then after a time M2=m the error in its
position is δz ∼ t2δa ∼M (setting c ¼ G ¼ 1, as we do

throughout this paper). Therefore, to ensure that the errors
remain small (i.e., δz ≪ M), we must allow no error in the
acceleration at order m2. In other words, we must account
for the second-order self-force.1

In addition to its applications in the EMRI problem, the
second-order self-force promises to be a useful tool in
modeling other binary systems. At first order, numerical
self-force data have been fruitfully used to fix high-order
terms and otherwise free parameters in post-Newtonian
[6–9] and effective one-body [10–13] models, and the same
strategy could be employed at second order. Perhaps more
strikingly, at first order, there is compelling evidence that
the self-force formalism can be made accurate well outside
the extreme mass-ratio regime [8,14], which suggests that
at second order the self-force could be used to directly
model intermediate mass-ratio and potentially even com-
parable-mass binaries with reasonable accuracy.
After several exploratory studies of the second-order

problem [4,15–17], these prospects have recently been
brought substantially closer to realization, and the essential
analytical ingredients necessary for concrete calculations of
the second-order self-force are now available [18–21].
These ingredients are

(i) A local expression for the small object’s self-
field hSμν

(ii) An equation of motion for the small object’s center
of mass in terms of a certain effective field hRμν

Both results were derived from the Einstein equations via
rigorous methods of matched asymptotic expansions devel-
oped in Refs. [16,22]; for an overview, see the review [3] or

1A subtler scaling argument [5] shows that only a specific
piece of the second-order force is needed: the orbit-averaged
dissipative piece, which causes the largest long-term changes in
the orbit.

PHYSICAL REVIEW D 89, 104020 (2014)
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Second order Ricci tensor
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Mode coupling

7

any well-behaved space of functions; see Ref. [53] for a
recent discussion. Hence, the problem must be tackled
via an e↵ective, regular field equation such as (26).

B. Conservative dynamics

We are interested in the retarded solution to the cou-
pled system made up of Eqs. (1), (25), and (26). From
this solution, I wish to extract the conservative dynamics.
I now set about doing that.

In the coupled system, the retarded solution is rep-
resented by a triplet (zµ, hR

µ⌫

, h
µ⌫

). My goal is to con-

struct a certain “subsystem,” denoted by (ẑµ, ĥR

µ⌫

), that

is purely conservative. The pair (ẑµ, ĥR

µ⌫

) will be such

that ẑµ is precisely circular, ĥR

µ⌫

is time symmetric in an
appropriate sense, and ẑµ is a geodesic of the e↵ective
metric g̃

µ⌫

= g
µ⌫

+ ĥR

µ⌫

. This construction allows me
to define a redshift variable ũt by normalizing the four-
velocity in the same metric in which the orbit is geodesic.
Later, in Sec. VI, I will describe a construction that uses
hR

µ⌫

instead of ĥR

µ⌫

.
I first consider the consequences of replacing the qua-

sicircular orbit zµ with a precisely circular orbit ẑµ; this
can be thought of heuristically as “turning o↵” dissipa-
tion, although the ambiguity in that phrase will become
clear below. After working out the broad features of the
retarded field corresponding to a puncture moving on ẑµ,
I then extract a time-symmetrized e↵ective metric from
the retarded field and specify ẑµ to be a geodesic of that
metric.

1. Retarded field with a circular source

There is considerable gauge freedom within the Lorenz
gauge, meaning the conservative orbit can take multiple
coordinate forms. I assume the particular gauge used
is ‘nice’, in the sense that the circular orbit ẑµ can be
parametrized in the manifestly circular form (4). The
four-velocity ûµ is then given by ûµ = Ûkµ, as previewed
in Eq. (7), with Û ⌘ dt

d⌧

= ût.
To study the retarded field corresponding to this or-

bit,3 I leave the functionals hn

µ⌫

[z] and hRn

µ⌫

[z] unchanged,
simply replacing zµ with ẑµ. That is, the fields satisfy
the puncture scheme composed of Eqs. (25) and (26),
with the puncture moving on ẑµ instead of zµ. The en-
tire system then inherits the orbit’s helical symmetry. In
other words, the metric perturbations satisfy the Killing

3 For simplicity, I assume the retarded field in the Lorenz gauge is
unique, with no possibility of alteration by gauge modes. That
is, I assume the equation Eµ⌫ [hn] = Sn

µ⌫ has a unique retarded
solution for each source Sn

µ⌫ , although I am unaware of a proof
of that proposition in Schwarzschild.

equations

L
k

h1

µ⌫

[ẑ] = 0, L
k

h2

µ⌫

[ẑ] = 0, (33)

and likewise for hRn

µ⌫

and hSn

µ⌫

. On ẑµ, these equations
can be written as

û⇢hR1

µ⌫,⇢

= 0, û⇢hR2

µ⌫,⇢

= 0. (34)

These symmetries can be established concretely from
that of the orbit. The source of the first-order equation
in the form (28), evaluated in Schwarzschild coordinates,
reads

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r � r̂)�(✓ � ⇡/2)�(�� ⌦t), (35)

which can be decomposed into ordinary scalar spherical
harmonics as

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r� r̂)

X

`m

Y ⇤
`m

(⇡/2,⌦t)Y
`m

(✓A), (36)

where ✓A = (✓,�). This source has a time dependence
e�im⌦t, and from its form one can infer that the retarded
solution h1

µ⌫

has an expansion

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

h
1i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A),

(37)
where h

1i`m

satisfies the outgoing wave condition h
1i`m

⇠
e

ikr

⇤

r

at large r and the ingoing wave condition h
1i`m

⇠
e�ikr

⇤
at the horizon; here r⇤ is the tortoise coordinate.

As in Sec. II, variables before a semicolon indicate the
point at which the field is evaluated, while those after
it indicate dependence on the source orbit. Y i`m

µ⌫

are
the tensor spherical harmonics defined by Barack and
Lousto [54], but any choice of tensor spherical harmonics
would do. Each of the harmonics depends on � only
through an exponential eim�, and to bring out the form
of h1

µ⌫

, I use that fact to rewrite Eq. (37) as

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

H
1i`m

(r; r̂)eim(��⌦t)P i`m

µ⌫

(✓), (38)

with some appropriate functions H
1i`m

and P i`m

µ⌫

. In the
form (38), h1

µ⌫

is manifestly helically symmetric. Natu-
rally, hS1

µ⌫

and hR1

µ⌫

each possess this symmetry, and so
hR1

µ⌫

= constant on the worldline ẑµ, where � = ⌦t.
Similar considerations imply the helical symmetry of

h2

µ⌫

[ẑ]. We need only establish the symmetry of T 2

µ⌫

[ẑ]
and �2R

µ⌫

. The decomposition of T 2

µ⌫

[ẑ] is essentially
identical to that of T 1

µ⌫

, so I focus on �2R
µ⌫

[h1, h1]. By
substituting the decomposition of h1

µ⌫

from Eq. (37) into
Eq. (27), we can see that �2R

µ⌫

[h1, h1] has the form
of a sum over helically symmetric terms of the form
ei(m

0
+m

00
)(��⌦t). In fact, �2R

µ⌫

[h1, h1] has a harmonic
expansion

�2R
µ⌫

[h1, h1] =
X

i`m

�2R
i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A)

(39)
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with radial functions given by a coupling formula of the
form

�2R
i`m

=
X

i

0
`

0
m

0

i

00
`

00
m

00

Di

0
`

0
m

0
i

00
`

00
m

00

i`m

[h
1i

0
`

0
m

0 , h
1i

00
`

00
m

00 ] , (40)

where Di

0
`

0
m

0
i

00
`

00
m

00

i`m

is a bilinear di↵erential operator.
The explicit, lengthy expressions in this coupling formula
will be given in a future publication [44]. Based on the
helical symmetry of its source, h2

µ⌫

can be expanded as

h2

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

h
2i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A) (41)

and put in the manifestly helically symmetric form

h2

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

H
2i`m

(r; r̂)eim(��⌦t)P i`m

µ⌫

(✓), (42)

and likewise for hS2

µ⌫

and hR2

µ⌫

.

2. Time-symmetrized e↵ective metric

At this point I still have not specified the equation of
motion determining ẑµ; I have merely stated that the
orbit is circular. Because I have neglected all the dis-
sipative forces in Eq. (1), clearly ẑµ cannot satisfy the
geodesic equation (3) in the e↵ective metric g

µ⌫

+hR

µ⌫

[ẑ],
which will include dissipative terms. I now construct an
e↵ective metric g̃

µ⌫

[ẑ] = g
µ⌫

+ ĥR

µ⌫

[ẑ] in which ẑµ can be
made a geodesic.
If second-order e↵ects are ignored, the conservative

piece of Eq. (2) is uniquely defined by constructing the
force from a half-retarded-plus-half-advanced metric per-
turbation, and the orbit is a geodesic of the e↵ective met-
ric corresponding to that perturbation. Taking this as
my inspiration, I follow an analogous procedure to define
ĥR

µ⌫

.
Let h1

µ⌫

[ẑ] ⌘ h1ret

µ⌫

[ẑ] be the retarded solution to

Eq. (28) with source T 1

µ⌫

[ẑ], and let hadv

µ⌫

[ẑ] be the ad-
vanced solution. The harmonic modes of these two so-
lutions are related in a simple way. Referring to the
form (37), I note that once e�im⌦tY i`m

µ⌫

has been factored

out of Eq. (28), the radial functions hret/adv

1i`m

(r) satisfy a
linear di↵erential equation with real coe�cients and a
real source. The di↵erence between the two solutions is
produced solely by a complex conjugation of the bound-
ary conditions: the retarded solution satisfies the out-
going wave condition h

1i`m

/ eikr
⇤
at infinity and the

ingoing wave condition h
1i`m

/ e�ikr

⇤
at the horizon,

while the advanced solution satisfies the complex conju-
gate of these conditions. It follows that the modes of the
two solutions are related by4

hadv

1i`m

= hret⇤
1i`m

, (43)

4 This argument is due to Leor Barack.

where the asterisk denotes complex conjugation. There-
fore the radial coe�cients in the half-retarded-plus-half-
advanced solution, ĥ1

µ⌫

[ẑ] = 1

2

h1ret

µ⌫

[ẑ] + 1

2

h1adv

µ⌫

[ẑ], are

given by ĥ
1i`m

= 1

2

(h
1i`m

+ h⇤
1i`m

). Here I am interested
not in this global field, but in an e↵ective metric in a
neighbourhood of the worldline. Hence, corresponding
to the half-retarded-plus-half-advanced field I introduce
a regular field ĥR1

µ⌫

=
P

i`m

ĥR

1i`m

e�im⌦tY i`m

µ⌫

with radial
coe�cients

ĥR

1i`m

⌘ 1

2
(hR

1i`m

+ hR⇤
1i`m

). (44)

Now I do the same for the regular field at second or-
der. I consider the retarded solution to Eq. (26), with
�2R

µ⌫

[h1, h1] constructed from the first-order retarded
field, and with the second-order singular field that in-
volves hR1

µ⌫

in Eq. (23), not ĥR1

µ⌫

. From the regular field
hR2

µ⌫

in this solution, I define a time-symmetrized regular

field ĥR2

µ⌫

with radial coe�cients

ĥR

2i`m

⌘ 1

2
(hR

2i`m

+ hR⇤
2i`m

). (45)

This can be loosely thought of as the regular field cor-
responding to the half-retarded-plus-half-advanced solu-
tion to Eq. (26), but for reasons I discuss in Sec. VI, it
is unlikely that such a solution would be globally well
behaved.
The time-symmetrized regular fields ĥRn

µ⌫

together de-

fine an e↵ective metric g̃
µ⌫

= g
µ⌫

+ ĥR

µ⌫

, with

ĥR

µ⌫

⌘ ✏ĥR1

µ⌫

[ẑ] + ✏2ĥR2

µ⌫

[ẑ]. (46)

This e↵ective metric, unlike g
µ⌫

+ hR

µ⌫

[z], does not sat-
isfy the vacuum Einstein equation through second or-
der. It does not even satisfy the vacuum equation in the
sense that g

µ⌫

+hR

µ⌫

[ẑ] does (i.e., up to dissipation-driven
changes in zµ). One can infer this from the fact that
hR1

µ⌫

, not ĥR1

µ⌫

, is used in the source for Eq. (26), meaning

ĥR2

µ⌫

will satisfy E
µ⌫

[ĥR2] = 2�2R
µ⌫

[hR1, hR1] rather than

E
µ⌫

[ĥR2] = 2�2R
µ⌫

[ĥR1, ĥR1].

Nevertheless, ĥR

µ⌫

meets our needs: it is a time-
symmetric piece of the retarded field h

µ⌫

[ẑ], and ẑµ can
be made a geodesic of the associated metric g̃

µ⌫

. I will
now verify the latter fact by writing the geodesic equa-
tion in the form (1), but with ẑµ and ĥR

µ⌫

in place of zµ

and hR

µ⌫

, and checking that a circular orbit is a consistent
solution. For concreteness, I rewrite the equation here as

D2ẑµ

d⌧2
= F̂µ[ẑ], (47)

where F̂µ[ẑ] is given by Eq. (2) with the replacement
hR

µ⌫

! ĥR

µ⌫

. Explicitly evaluating the covariant deriva-
tives on the left-hand side leads to the algebraic equation

�µ
r

�r

uu

= F̂µ[ẑ], (48)



Mode coupling: 𝛿2R[h1,h1]
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Mode decomposition: 𝛿2R[h1S,h1S]
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Mode decomposition: 𝛿2R[h1S,h1S]
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Towards second order self-force

Eff. source

h̃lm

h(1)ret
lm

Mode-sum

h(1)R

Eff. source

h(1)S
lm

h(2)S

h(2)S
lm

h(1)S

h(2)Rh(2)R Ũ


