Inspiral into Gargantua

Niels Warburton Sam Gralla Scott Hughes

Marc Casals Chris Kavanagh Adrian Ottewill Barry Wardell

Gargantua?

For 'Interstellar' Thorne estimates the black hole (Gargantua) must be spinning at $a/M \simeq 1-10^{-14}$

This talk: Gravitational wave emission from an inspiral into a near-extremal Kerr (NEK) black hole. NEK $\implies a/M \gtrsim 0.9999$

Jseful notation:
$$x = \frac{r - r_+}{r_+}$$
 $\epsilon = \sqrt{1 - a^2/M^2}$

Anatomy of a NEK inspiral

Flux decreases as horizon is approached New analytic flux approximation

Derivation of main result

$$E = \frac{\mu}{\sqrt{3}} \left[1 + \frac{2x_0}{3} \left(1 - \frac{2\epsilon^2}{x_0^3} \right) \right]$$

Energy of a particle on a circular equatorial orbit

 $P_{\rm GW} = (C_\infty + C_H) x_0$ Gralla, Porfyriadis, Warburton, Phys. Rev. D 92, 064029, arXiv:1506.0896

$$\left(\frac{dE}{dx_0}\right)^{-1} \frac{dE}{dt} = \frac{dx_0}{dt} = -\frac{x_0}{\tau} \left(\frac{1}{1 - 2\epsilon^2/x_0^3}\right) \left[\frac{dx_0}{dt} - \frac{dx_0}{\tau}\right]$$

$$\tau = 0.451 \mu (M/\mu)^2$$

$$x_0(t) = X_0 e^{-t/\tau} \implies P_{\text{detector}} \sim e^{-t/\tau}$$

Similarly:
$$f_{\text{detector}} \sim 2 \times \Omega_H / 2\pi = \frac{1}{2\pi M}$$

Results: circular, equatorial

There is no chirp

Results: circular, equatorial inspiral

Orbital radius decays slowly near the horizon

Orbital frequency saturates at the horizon frequency

Strong relativistic beaming in the nearhorizon regime

Results: spherical and eccentric, equatorial inspirals

Spherical

- Azimuthal frequency saturates at horizon frequency. Polar frequency tends to zero

- Waveform: exp. decay modulated with polar libration frequency

Eccentric, equatorial

- Considered low eccentricity inspirals (e~0.01)
- Waveform: exp. decay modulated with radial libration frequency

Extra details in the paper

- detectability with eLISA and ground-base detectors
- enough room for extended body near the horizon?
- when is the evolution adiabatic?
- zoom-whirl orbits can have 'inverted' behaviour
- confusion with quasi-normal mode ringing?

Extra details not in the paper

Shift in the ISCO location due to the smaller body...

The ISCO gives access to the near-horizon region

Near horizon flux not sensitive to ε . The location of the ISCO more important.

ISCO shift in Kerr spacetime Isoyama+, PRL 113, 161101 (2014)

$$(M+\mu)\,\Omega_{\rm isco} = M\Omega_{\rm isco}^{(0)}(q)\left\{1+\eta\,C_{\Omega}(q)+\mathcal{O}(\eta^2)\right\}$$

 C_{Ω} can be calculated from the redshift invariant computed for a sequence of circular orbits

$$z \equiv 1/u^{t}$$

= $z_{(0)} + \eta z_{(1)} + \mathcal{O}(\eta)^{2}$
 $z_{(1)} = z_{(0)}H$, where $H = \frac{1}{2}h_{\alpha\beta}^{R}u^{\alpha}u^{\beta}$
 $C_{\Omega} = 1 - \frac{1}{2}\frac{z_{(1)}''(\Omega_{isco}^{(0)})}{\Omega_{isco}^{(0)}z_{(0)}'''(\Omega_{isco}^{(0)})}$

Calculation of H via radiation gauge

Code to calculate ψ_4 in the near horizon regime

Code to calculate H from ψ_0

$$\psi_4 = \frac{1}{(r - ia\cos(\theta))^4} \sum_{lm\omega} {}_{-2}R_{lm} {}_{-2}S^{a\omega}_{lm}(\theta)e^{im\varphi}e^{-i\omega t}$$
$$\psi_0 = \sum_{lm\omega} {}_{2}R_{lm} {}_{2}S^{a\omega}_{lm}(\theta)e^{im\varphi}e^{-i\omega t}$$

Calculation of H via radiation gauge

$${}_{-2}R_{lm} = Z_{--2}\tilde{R}_{lm}^{-}\Theta(r_0 - r) + Z_{+-2}\tilde{R}_{lm}^{+}\Theta(r - r_0)$$
$${}_{2}R_{lm} = Y_{--2}\tilde{R}_{lm}^{-}\Theta(r_0 - r) + Y_{+2}\tilde{R}_{lm}^{+}\Theta(r - r_0)$$

$$Y_{+} = \frac{C}{4\omega^{4}} Z_{+}$$

$$Y_{-} = 64(2Mr_{+})^{4} ik(k^{2} + 4\epsilon^{2})(4\epsilon - ik)C^{-1}Z_{-}$$

Using Teukolsky-Starobinsky identities ${}_{-2}\tilde{R}_{lm}\leftrightarrow {}_{2}\tilde{R}_{lm}$

$$\epsilon = \frac{\sqrt{M^2 - a^2}}{4Mr_+}$$
$$C = \sqrt{|C|^2 - (12M\omega)^2} + i12M\omega(-1)^{l+m}$$

This term was missing from Press and Teukolsky 1974

Regularize spheroidal-harmonic modes directly

$$H^R = \sum_l \left(H_l^{\text{ret}} - B_H \right) \quad S_{\ell m}(\theta) e^{im\phi} = \sum_{l=0}^\infty b_{lm}^\ell Y_{lm}(\theta, \phi)$$

Old way: reg. spherical-harmonic modes New way: reg. spheroidal-harmonic modes

> For more details see Kavanagh's talk on Thursday

Near-extremal Kerr ISCO shift

Near-extremal Kerr ISCO shift

Can we say anything about the extremal limit?

Can we say anything about the extremal limit? Maybe...

$$C_{\Omega} = 1 - \frac{1}{2} \frac{z_{(1)}^{\prime\prime}(\Omega_{isco}^{(0)})}{\Omega_{isco}^{(0)} z_{(0)}^{\prime\prime\prime}(\Omega_{isco}^{(0)})}$$

$$z_{(0)}^{\prime\prime\prime}(\Omega_{\rm isco}^{(0)}) \sim \epsilon^{-2/3}$$

For $z_{(1)}^{\prime\prime}(\Omega_{isco}^{(0)})$ take inspiration from Colleoni+ (arXiv:1508.04031) and split result into completion piece $z_{(1)}^{\prime\prime compl}(\Omega_{isco}^{(0)}) \sim \epsilon^{-2/3}$ singular piece $z_{(1)}^{\prime\prime S}(\Omega_{isco}^{(0)}) \sim const$ reconstruction piece Preliminary numerical results suggest that $z_{(1)}^{\prime\prime recons}(\Omega_{isco}^{(0)})$ is finite, or at least doesn't diverge as fast as $\epsilon^{-2/3}$

Near-extremal Kerr ISCO shift

Future directions

Analytically calculate next term: $P_{GW} = (C_{\infty} + C_H)x_0 + \mathcal{O}(x_0)^2$ Analytically calculate the ISCO shift Add plunge and ringdown

Gravitational wave emission from an inspiral into a near-extremal Kerr black hole

- Characteristic exponential decay in waveform amplitude and rapid rise in the frequency: there is no chirp
- Signal robust to perturbations of the inspiral away from circular, equatorial
- Candidate source for eLISA and possibly ground based detectors
- Calculated the conservative ISCO shift for a near-extremal Kerr black hole

If Gargantua is out there eLISA just might find it