# Scalar self-force for highly eccentric orbits in Kerr spacetime

# Jonathan Thornburg

### in collaboration with

# **Barry Wardell**

Department of Astronomy and Center for Spacetime Symmetries Indiana University Bloomington, Indiana, USA Department of Astronomy Cornell University Ithaca, New York, USA







イロト イポト イヨト イヨト

2016-06-29 1 / 18

- Kerr
- highly-eccentric orbits:
  - eLISA EMRIs: likely have e up to  $\sim$  0.8

- Kerr
- highly-eccentric orbits:
  - eLISA EMRIs: likely have e up to  $\sim 0.8$
  - eLISA <u>IMRIs</u> (likely rare, but maybe very strong sources if they exist): may have e up to  $\sim 0.998$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

- Kerr
- highly-eccentric orbits:
  - eLISA EMRIs: likely have e up to  $\sim 0.8$
  - eLISA <u>IMRIs</u> (likely rare, but maybe very strong sources if they exist): may have *e* up to  $\sim 0.998$

2016-06-29

2 / 18

- [now] (bound, geodesic) equatorial orbits: [future] inclined (generic geodesic)
- compute self-force (all around fixed orbit)

- Kerr
- highly-eccentric orbits:
  - eLISA EMRIs: likely have e up to  $\sim 0.8$
  - eLISA <u>IMRIs</u> (likely rare, but maybe very strong sources if they exist): may have *e* up to  $\sim 0.998$
- [now] (bound, geodesic) equatorial orbits: [future] inclined (generic geodesic)
- compute self-force (all around fixed orbit)
  - $\Rightarrow$  easy access to  $\Delta$ geodesic per orbit, but we haven't done this yet
  - $\Rightarrow$  [easy access to emitted radiation at  $\mathcal{J}^+$ , but we haven't done this yet]

- Kerr
- highly-eccentric orbits:
  - eLISA EMRIs: likely have e up to  $\sim$  0.8
  - eLISA <u>IMRIs</u> (likely rare, but maybe very strong sources if they exist): may have *e* up to  $\sim 0.998$
- [now] (bound, geodesic) equatorial orbits: [future] inclined (generic geodesic)
- compute self-force (all around fixed orbit)
  - $\Rightarrow\,$  easy access to  $\Delta geodesic\,\, per\,\, orbit,\,\, but$  we haven't done this yet
  - $\Rightarrow$  [easy access to emitted radiation at  $\mathcal{J}^+$ , but we haven't done this yet]

Limitations

- *O*(μ)
- scalar field; develop techniques for gravitational field (Lorenz-gauge)

- Kerr
- highly-eccentric orbits:
  - eLISA EMRIs: likely have e up to  $\sim$  0.8
  - eLISA <u>IMRIs</u> (likely rare, but maybe very strong sources if they exist): may have e up to  $\sim 0.998$
- [now] (bound, geodesic) equatorial orbits: [future] inclined (generic geodesic)
- compute self-force (all around fixed orbit)
  - $\Rightarrow\,$  easy access to  $\Delta geodesic\,\, per\,\, orbit,\,\, but$  we haven't done this yet
  - $\Rightarrow$  [easy access to emitted radiation at  $\mathcal{J}^+$ , but we haven't done this yet]

Limitations

- *O*(μ)
- scalar field; develop techniques for gravitational field (Lorenz-gauge)
- ★ may have a solution to Lorenz gauge instabilities [with Sam Dolan] ⇒ if this works, then extension to gravitational field looks doable

Effective-Source (puncture-field) regularization

▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
  - gravitational field  $\Rightarrow$  Lorenz-gauge instabilities [Dolan & Barack]

イロト 不得下 イヨト イヨト 二日

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
  - gravitational field  $\Rightarrow$  Lorenz-gauge instabilities [Dolan & Barack]

may have a solution to these [joint with Dolan]

イロト 不得下 イヨト イヨト 二日

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
  - gravitational field  $\Rightarrow$  Lorenz-gauge instabilities [Dolan & Barack]

may have a solution to these [joint with Dolan]

*m*-mode  $(e^{im\phi})$  decomposition, time-domain evolution

- exploit axisymmetry of Kerr background
- can handle (almost) any orbit, including high eccentricity
- separate 2+1-dimensional time-domain (numerical) evolution for each m
- presently equatorial orbits, but no serious obstacles to generic orbits

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
  - gravitational field  $\Rightarrow$  Lorenz-gauge instabilities [Dolan & Barack]

may have a solution to these [joint with Dolan]

*m*-mode  $(e^{im\phi})$  decomposition, time-domain evolution

- exploit axisymmetry of Kerr background
- can handle (almost) any orbit, including high eccentricity
- separate 2+1-dimensional time-domain (numerical) evolution for each m
- presently equatorial orbits, but no serious obstacles to generic orbits
- worldtube scheme
- worldtube moves in  $(r, \theta)$  to follow the particle around the orbit

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
  - gravitational field  $\Rightarrow$  Lorenz-gauge instabilities [Dolan & Barack]

may have a solution to these [joint with Dolan]

*m*-mode  $(e^{im\phi})$  decomposition, time-domain evolution

- exploit axisymmetry of Kerr background
- can handle (almost) any orbit, including high eccentricity
- separate 2+1-dimensional time-domain (numerical) evolution for each m
- presently equatorial orbits, but no serious obstacles to generic orbits
- worldtube scheme
- worldtube moves in  $(r, \theta)$  to follow the particle around the orbit
- hyperboloidal slices (reach horizon and J<sup>+</sup>)
   [Zenginoğlu, arXiv:1008.3809 = J. Comp. Phys. 230, 2286]

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
  - gravitational field  $\Rightarrow$  Lorenz-gauge instabilities [Dolan & Barack]

may have a solution to these [joint with Dolan]

*m*-mode  $(e^{im\phi})$  decomposition, time-domain evolution

- exploit axisymmetry of Kerr background
- can handle (almost) any orbit, including high eccentricity
- separate 2+1-dimensional time-domain (numerical) evolution for each m
- presently equatorial orbits, but no serious obstacles to generic orbits
- worldtube scheme
- worldtube moves in  $(r, \theta)$  to follow the particle around the orbit
- hyperboloidal slices (reach horizon and  $\mathcal{J}^+$ ) [Zenginoğlu, arXiv:1008.3809 = J. Comp. Phys. 230, 2286]
- (fixed) mesh refinement; some (finer) grids follow the worldtube/particle

Assume a  $\delta$ -function particle with scalar charge q.

The particle's physical (retarded) scalar field  $\varphi$  satisfies  $\Box \varphi = \delta(x - x_{\text{particle}}(t))$ .  $\varphi$  is singular at the particle.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Assume a  $\delta$ -function particle with scalar charge q.

The particle's physical (retarded) scalar field  $\varphi$  satisfies  $\Box \varphi = \delta(x - x_{\text{particle}}(t))$ .  $\varphi$  is singular at the particle.

If we knew the Detwiler-Whiting decomposition  $\varphi = \varphi_{\text{singular}} + \varphi_{\text{regular}}$  explicitly, we could compute the self-force via  $F_a = q(\nabla_a \varphi_{\text{regular}})|_{\text{particle}}$ .

Assume a  $\delta$ -function particle with scalar charge q.

The particle's physical (retarded) scalar field  $\varphi$  satisfies  $\Box \varphi = \delta (x - x_{\text{particle}}(t))$ .  $\varphi$  is singular at the particle.

If we knew the Detwiler-Whiting decomposition  $\varphi = \varphi_{\text{singular}} + \varphi_{\text{regular}}$  explicitly, we could compute the self-force via  $F_a = q(\nabla_a \varphi_{\text{regular}})|_{\text{particle}}$ . But it's very hard to explicitly compute the decomposition.

2016-06-29

4 / 18

Instead we choose  $\varphi_{\text{puncture}} \approx \varphi_{\text{singular}}$  so that  $\varphi_{\text{residual}} := \varphi - \varphi_{\text{puncture}}$  is finite and "differentiable enough" at the particle.

Assume a  $\delta$ -function particle with scalar charge q.

The particle's physical (retarded) scalar field  $\varphi$  satisfies  $\Box \varphi = \delta (x - x_{\text{particle}}(t))$ .  $\varphi$  is singular at the particle.

If we knew the Detwiler-Whiting decomposition  $\varphi = \varphi_{\text{singular}} + \varphi_{\text{regular}}$  explicitly, we could compute the self-force via  $F_a = q(\nabla_a \varphi_{\text{regular}}) \Big|_{\text{particle}}$ . But it's very hard to explicitly compute the decomposition.

Instead we choose  $\varphi_{\text{puncture}} \approx \varphi_{\text{singular}}$  so that  $\varphi_{\text{residual}} := \varphi - \varphi_{\text{puncture}}$  is finite and "differentiable enough" at the particle. It's then easy to see that

$$\Box \varphi_{\text{residual}} = \begin{cases} 0 & \text{at the particle} \\ -\Box \varphi_{\text{puncture}} & \text{elsewhere} \end{cases} := S_{\text{effective}}$$

If we can solve this equation for  $\varphi_{\text{residual}}$ , then we can compute the self-force (exactly!) via  $F_a = q(\nabla_a \varphi_{\text{residual}})|_{\text{particle}}$ .

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー わんの

### Puncture field and effective source

We choose  $\varphi_{\text{puncture}}$  so that  $|\varphi_{\text{puncture}} - \varphi_{\text{singular}}| = \mathcal{O}(||x - x_{\text{particle}}||^n)$ where the puncture order  $n \ge 2$  is a parameter.

 $\varphi_{\text{residual}}$  is then  $C^{n-2}$  at the particle, and  $S_{\text{effective}}$  is  $C_0$ .

### Puncture field and effective source

We choose  $\varphi_{\text{puncture}}$  so that  $|\varphi_{\text{puncture}} - \varphi_{\text{singular}}| = \mathcal{O}(||x - x_{\text{particle}}||^n)$ where the puncture order  $n \ge 2$  is a parameter.

 $\varphi_{\text{residual}}$  is then  $C^{n-2}$  at the particle, and  $S_{\text{effective}}$  is  $C_0$ .

The choice of the puncture order *n* is a tradeoff: Higher  $n \Rightarrow \varphi_{\text{residual}}$  is smoother at the particle (good), but  $\varphi_{\text{puncture}}$  and  $S_{\text{effective}}$  are more complicated (expensive) to compute. We choose  $n = 4 \Rightarrow \varphi_{\text{residual}}$  is  $C^2$  at the particle.

### Puncture field and effective source

We choose  $\varphi_{\text{puncture}}$  so that  $|\varphi_{\text{puncture}} - \varphi_{\text{singular}}| = \mathcal{O}(||x - x_{\text{particle}}||^n)$ where the puncture order  $n \ge 2$  is a parameter.

 $\varphi_{\text{residual}}$  is then  $C^{n-2}$  at the particle, and  $S_{\text{effective}}$  is  $C_0$ .

The choice of the puncture order *n* is a tradeoff: Higher  $n \Rightarrow \varphi_{\text{residual}}$  is smoother at the particle (good), but  $\varphi_{\text{puncture}}$  and  $S_{\text{effective}}$  are more complicated (expensive) to compute.

We choose  $n = 4 \Rightarrow \varphi_{\text{residual}}$  is  $C^2$  at the particle.

The actual computation of  $\varphi_{\text{puncture}}$  and  $S_{\text{effective}}$  involves lengthly series expansions in Mathematica, then machine-generated C code. See Wardell, Vega, Thornburg, and Diener, *PRD* 85, 104044 (2012) = arXiv:1112.6355 for details.

Computing  $S_{\text{effective}}$  at a single event requires  $\sim \frac{1}{2} \times 10^6$  arithmetic operations.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

#### Problems:

•  $\varphi_{\text{puncture}}$  and  $S_{\text{effective}}$  are only defined in a neighbourhood of the particle

▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

#### Problems:

- $\varphi_{\text{puncture}}$  and  $S_{\text{effective}}$  are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to  $\varphi,$  not  $\varphi_{\rm residual}$

### Problems:

- $\varphi_{\text{puncture}}$  and  $S_{\text{effective}}$  are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to  $\varphi$ , not  $\varphi_{\text{residual}}$

#### Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field"  $\varphi_{numerical} = \begin{cases} \varphi_{residual} & inside the worldtube \\ \varphi & outside the worldtube \end{cases}$ 

• compute  $\varphi_{numerical}$  by numerically solving

 $\Box \varphi_{\text{numerical}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ 

・ロ> ・日本 ・ 日本 ・ 日本 ・ 日本 ・ の へ ()

#### Problems:

- $\varphi_{\text{puncture}}$  and  $S_{\text{effective}}$  are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to  $\varphi$ , not  $\varphi_{\text{residual}}$

#### Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field"  $\varphi_{numerical} = \begin{cases} \varphi_{residual} & inside the worldtube \\ \varphi & outside the worldtube \end{cases}$ 

• compute  $\varphi_{numerical}$  by numerically solving

 $\Box \varphi_{\text{numerical}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ 

• now  $S_{\text{effective}}$  is only needed inside the worldtube

### Problems:

- $\varphi_{\text{puncture}}$  and  $S_{\text{effective}}$  are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to  $\varphi$ , not  $\varphi_{\text{residual}}$

#### Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field"  $\varphi_{numerical} = \begin{cases} \varphi_{residual} & inside the worldtube \\ \varphi & outside the worldtube \end{cases}$ 

• compute  $\varphi_{numerical}$  by numerically solving

 $\Box \varphi_{\text{numerical}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ 

- now S<sub>effective</sub> is only needed inside the worldtube
- $\varphi_{\text{numerical}}$  has a  $\pm \varphi_{\text{puncture}}$  jump discontinuity across worldtube boundary  $\Rightarrow$  finite difference operators that cross the worldtube boundary must compensate for the jump discontinuity

### *m*-mode decomposition

Instead of numerically solving  $\Box \varphi_{\text{numerical}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1 dimensions, we Fourier-decompose into  $e^{im\phi}$  modes and solve for each Fourier mode in 2+1 dimensions via

 $\Box_m \varphi_{\text{numerical},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases} \begin{bmatrix} \text{numerically} \\ \text{solve this} \\ \text{for each } m \\ \text{in } 2+1\text{D} \end{cases}$ 

The self-force is given (exactly!) by  $F_a = q \sum_{m=0}^{\infty} (\nabla_a \varphi_{\text{numerical},m}) |_{\text{particle}}$ 

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへの

### *m*-mode decomposition

Instead of numerically solving  $\Box \varphi_{\text{numerical}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1 dimensions, we Fourier-decompose into  $e^{im\phi}$  modes and solve for each Fourier mode in 2+1 dimensions via

$$\Box_m \varphi_{\text{numerical},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$$

 $\begin{bmatrix} numerically \\ solve this \\ for each m \\ in 2+1D \end{bmatrix}$ 

The self-force is given (exactly!) by  $F_a = q \sum_{m=0}^{\infty} (\nabla_a \varphi_{numerical,m}) |_{particle}$ 

Advantages (vs. direct solution in 3 + 1 dimensions):

- can use different numerical parameters for different m
  - \* (this is crucial for our hoped-for solution to the Lorenz-gauge instabilities in the gravitational case)
- each individual *m*'s evolution is smaller  $\Rightarrow$  test/debug code on laptop
- get moderate parallelism "for free" (run different *m*'s evolutions in parallel)

We actually do *m*-mode decomposition *before* introducing worldtube  $\Rightarrow$  worldtube "lives" in  $(t, r, \theta)$  space, not full spacetime

The worldtube must contain the particle in  $(r, \theta)$ . But for a non-circular orbit, the particle moves in  $(r, \theta)$  during the orbit.

イロト イポト イヨト イヨト 二日

We actually do *m*-mode decomposition *before* introducing worldtube  $\Rightarrow$  worldtube "lives" in  $(t, r, \theta)$  space, not full spacetime

The worldtube must contain the particle in  $(r, \theta)$ . But for a non-circular orbit, the particle moves in  $(r, \theta)$  during the orbit.

Small eccentricity: can use a worldtube big enough to contain the entire orbit

We actually do *m*-mode decomposition *before* introducing worldtube  $\Rightarrow$  worldtube "lives" in  $(t, r, \theta)$  space, not full spacetime

The worldtube must contain the particle in  $(r, \theta)$ . But for a non-circular orbit, the particle moves in  $(r, \theta)$  during the orbit.

Small eccentricity: can use a worldtube big enough to contain the entire orbit

#### Large eccentricity:

• must move the worldtube in  $(r, \theta)$  to follow the particle around the orbit

We actually do *m*-mode decomposition *before* introducing worldtube  $\Rightarrow$  worldtube "lives" in  $(t, r, \theta)$  space, not full spacetime

The worldtube must contain the particle in  $(r, \theta)$ . But for a non-circular orbit, the particle moves in  $(r, \theta)$  during the orbit.

Small eccentricity: can use a worldtube big enough to contain the entire orbit

#### Large eccentricity:

- must move the worldtube in  $(r, \theta)$  to follow the particle around the orbit
- recall that our numerically-evolved field is

 $\varphi_{\text{numerical}} := \begin{cases} \varphi - \varphi_{\text{puncture}} & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ 

this means then if we move the worldtube, we must adjust the evolved  $\varphi_{\text{numerical}}$ : add  $\pm \varphi_{\text{puncture}}$  at spatial points which change from being inside the worldtube to being outside, or vice versa

# Code Validation

Comparison with frequency-domain results kindly provided by Niels Warburton

# Code Validation

Comparison with frequency-domain results kindly provided by Niels Warburton

Typical example: (a, p, e) = (0.9, 10M, 0.5)  $\Rightarrow$  results agree to  $\sim 10^{-5}$  relative error

We have also compared a variety of other configurations, with fairly similar results



▲□ ► ▲ □ ► ▲



Jonathan Thornburg / Capra 19 @ Meudon

2016-06-29 10 / 18

e = 0.8 orbit spin=0.6 p=8M e=0.8  $\Delta R_{\star}=M/64$  Self-force Loop t 300 outwards (a, p, e) = (0.6, 8M, 0.8)inwards <sup>3</sup> F<sub>t</sub> (10<sup>-3</sup> q<sup>2</sup>/M) 200 Notice the "bump" in  $F_r$ 100 near r = 15M moving outwards Maybe a caustic crossing? 0 6 8 10 15 20 30 40 r (M) spin=0.6 p=8M e=0.8 ∆R.=M/64 Self-force Loop spin=0.6 p=8M e=0.8 ∆R + M/64 Self-force Loop  $\phi$ r 40 0 outwards outwards 20 inwards inwards -500 0 r<sup>3</sup> F<sub>r</sub> (10<sup>-3</sup> q<sup>2</sup>/M)  $r^{3} F_{\phi} (10^{-3} q^{2}/M)$ -20 -1000 -40 -1500 -60 -80 -2000 -100 -120 -2500 6 8 10 15 20 30 40 6 8 10 15 20 30 40 4 4 r (M) r (M)

Jonathan Thornburg / Capra 19 @ Meudon

2016-06-29 10 / 18

A (10) A (10) A (10)

# Wiggles!







Jonathan Thornburg / Capra 19 @ Meudon

2016-06-29 11 / 18

▲ 圖 ▶ ▲ 国 ▶ ▲ 国

# Wiggles!

Higher-eccentricity orbit: (a, p, e) = (0.99, 7M, 0.9)

Notice:

- wiggles on outgoing leg of orbit
- wiggles not seen on ingoing leg





Jonathan Thornburg / Capra 19 @ Meudon

2016-06-29 11 / 18

-

### Wiggles as Kerr Quasinormal Modes: Mode Fit

Leor Barack suggested that wiggles might be quasinormal modes of the (background) Kerr spacetime, excited by the particle's close flyby. Test this by fitting decay of wiggles to a damped sinusoid with corrections for motion of the observer (particle):

$$rF_r^{[m=1]}(u) = \mathsf{background}(u) + A \exp\left(-rac{u-u_0}{ au}
ight) \sin\left(\phi_0 + 2\pi rac{u-u_0}{ au}
ight)$$

where  $u := t - r_*$ 



Jonathan Thornburg / Capra 19 @ Meudon

2016-06-29 12 / 18

# Wiggles as Kerr Quasinormal Modes: Mode Frequencies

Now compare wiggle-fit complex frequency  $\omega := 2\pi/T - i/\tau$ 

vs. known Kerr quasinormal mode frequencies computed by Emanuele Berti.

# Wiggles as Kerr Quasinormal Modes: Mode Frequencies

Now compare wiggle-fit complex frequency  $\omega := 2\pi/T - i/\tau$ vs. known Kerr quasinormal mode frequencies computed by Emanuele Berti.

 $\Rightarrow$  Nice agreement with least-damped corotating QNM!



spin=0.99 p=7M e=0.9 rF<sub>r</sub>(u = t-r<sub>\*</sub>) wiggles decay vs Kerr QNMs

Jonathan Thornburg / Capra 19 @ Meudon

```
2016-06-29 13 / 18
```

# Wiggles as Kerr Quasinormal Modes: Varying BH Spin

Repeat wiggle-fit procedure for other Kerr spins (0.99, 0.95, 0.9, and 0.8)  $\Rightarrow$  Nice agreement with least-damped corotating QNM for all BH spins!





a = 0.99

spin=0.9 p=7M e=0.9 rF,(u = t-r.) wiggles decay vs Kerr QNMs 0.0 -0.1 -0.2 [0] [0] -0.3 wiggles decay fit -0.4 Kerr ONMs (m=+1) Kerr ONMs (m=-1) -0.5 0.2 0.4 0.6 0.8 1.0 Ref<sub>@</sub>]

a = 0.95



*a* = 0.8

spin=0.8 p=7M e=0.9 rFr(u = t-r.) wiggles decay vs Kerr QNMs



Jonathan Thornburg / Capra 19 @ Meudon

2016-06-29 14 / 18

# More wiggles

We now see wiggles for many configurations with

- high Kerr spin
- highly-eccentric prograde orbit with close-in periastron



# More wiggles

We now see wiggles for many configurations with

- high Kerr spin
- highly-eccentric prograde orbit with close-in periastron

Note non-sinsoidal wiggle shapes ⇒ multiple QNMs? maybe caustic crossings are also important? (Ottewill & Wardell)



# Gravitation: Unstable Lorenz Gauge Modes

How to extend this work to the full gravitational field?

- Work in Lorenz gauge  $\Rightarrow$  metric perturbation is isotropic at the particle.
- The effective-source (puncture-field) regularization works fine for the gravitational case.

イロト 不得下 イヨト イヨト 二日

# Gravitation: Unstable Lorenz Gauge Modes

How to extend this work to the full gravitational field?

- Work in Lorenz gauge  $\Rightarrow$  metric perturbation is isotropic at the particle.
- The effective-source (puncture-field) regularization works fine for the gravitational case.
- Dolan and Barack [PRD 87, 084066 (2013) = arXiv:1211.4586] found that the m = 0 and m = 1 modes have Lorenz gauge instabilities. These are modes which are consistent with the Lorenz gauge condition at any finite time, but blow up as  $t \to \infty$ . They were able 70 to stabilize the m = 0 mode using a standard 60 dynamically-driven generalized Lorenz gauge (analogous to the  $\mathbb{Z}^4$  evolution 50 ||state vector|| 40 system in full nonlinear numerical 30 relativity).
  - They were not able to stabilize the m = 1 mode. The instability is linear in time.



Basic idea (schematic): [Joint work with Sam Dolan]

- First define (choose) an inner product on state vectors **u**.
- Then compute the growing mode  $G(t, x^i) := t\mathbf{u}_{\text{growing}}(x^i)$ . Notice that this is a homogeneous solution of the evolution equation.  $\mathbf{u}_{\text{growing}}$  depends only on the spacetime, not on the initial data or particle orbit.

Basic idea (schematic): [Joint work with Sam Dolan]

- First define (choose) an inner product on state vectors **u**.
- Then compute the growing mode  $G(t, x^i) := t\mathbf{u}_{\text{growing}}(x^i)$ . Notice that this is a homogeneous solution of the evolution equation.  $\mathbf{u}_{\text{growing}}$  depends only on the spacetime, not on the initial data or particle orbit.

2016-06-29 17 / 18

• Write m = 1 gravitational perturbation evolution as  $\frac{du}{dt} = R(\mathbf{u})$ 

Basic idea (schematic): [Joint work with Sam Dolan]

- First define (choose) an inner product on state vectors **u**.
- Then compute the growing mode  $G(t, x^i) := t \mathbf{u}_{\text{growing}}(x^i)$ . Notice that this is a homogeneous solution of the evolution equation.  $\mathbf{u}_{\text{growing}}$  depends only on the spacetime, not on the initial data or particle orbit.

2016-06-29 17 / 18

- Write m = 1 gravitational perturbation evolution as  $\frac{du}{dt} = R(\mathbf{u})$
- Replace evolution eqn with  $\frac{d\mathbf{u}}{dt} = \tilde{R}(\mathbf{u})$ where  $\tilde{R}(\mathbf{u}) := R(\mathbf{u}) + \lambda \mathbf{u}_{\text{growing}}$
- Choose (update)  $\lambda$  "every so often" such that  $\tilde{R}(\mathbf{u}) \perp \mathbf{u}_{\text{growing}}$  $(\perp \text{ w.r.t. our chosen inner product}).$

Basic idea (schematic): [Joint work with Sam Dolan]

- First define (choose) an inner product on state vectors **u**.
- Then compute the growing mode  $G(t, x^i) := t\mathbf{u}_{\text{growing}}(x^i)$ . Notice that this is a homogeneous solution of the evolution equation.  $\mathbf{u}_{\text{growing}}$  depends only on the spacetime, not on the initial data or particle orbit.

2016-06-29 17 / 18

- Write m = 1 gravitational perturbation evolution as  $\frac{d\mathbf{u}}{dt} = R(\mathbf{u})$
- Replace evolution eqn with  $\frac{d\mathbf{u}}{dt} = \tilde{R}(\mathbf{u})$ where  $\tilde{R}(\mathbf{u}) := R(\mathbf{u}) + \lambda \mathbf{u}_{\text{growing}}$
- Choose (update)  $\lambda$  "every so often" such that  $\tilde{R}(\mathbf{u}) \perp \mathbf{u}_{\text{growing}}$ ( $\perp$  w.r.t. our chosen inner product).
- This is equivalent to Gram-Schmidt orthogonalizing *R* w.r.t. u<sub>growing</sub>.

Basic idea (schematic): [Joint work with Sam Dolan]

- First define (choose) an inner product on state vectors **u**.
- Then compute the growing mode  $G(t, x^i) := t \mathbf{u}_{\text{growing}}(x^i)$ . Notice that this is a homogeneous solution of the evolution equation.  $\mathbf{u}_{\text{growing}}$  depends only on the spacetime, not on the initial data or particle orbit.
- Write m = 1 gravitational perturbation evolution as  $\frac{d\mathbf{u}}{dt} = R(\mathbf{u})$
- Replace evolution eqn with  $\frac{d\mathbf{u}}{dt} = \tilde{R}(\mathbf{u})$ where  $\tilde{R}(\mathbf{u}) := R(\mathbf{u}) + \lambda \mathbf{u}_{\text{growing}}$
- Choose (update)  $\lambda$  "every so often" such that  $\tilde{R}(\mathbf{u}) \perp \mathbf{u}_{\text{growing}}$ ( $\perp$  w.r.t. our chosen inner product).
- This is equivalent to Gram-Schmidt orthogonalizing  $\tilde{R}$  w.r.t.  $\mathbf{u}_{\text{growing}}$ .

#### This seems to work: evolutions are stable!

• Now trying it for sourced evolution...



#### Methods

- effective source/puncture field regularization works very well
- Zenginoğlu's hyperboloidal slices work very well

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Methods

- effective source/puncture field regularization works very well
- Zenginoğlu's hyperboloidal slices work very well
- moving worldtube allows highly-eccentric orbits we have done up to e = 0.98

  - higher is possible but expensive with current code
- details → Thornburg & Wardell, arXiv:1607.????

(日) (同) (日) (日) (日)

Methods

- effective source/puncture field regularization works very well
- Zenginoğlu's hyperboloidal slices work very well
- moving worldtube allows highly-eccentric orbits
   we have done up to e = 0.98

  - higher is possible but expensive with current code
- details → Thornburg & Wardell, arXiv:1607.????

Wiggles

 if high Kerr spin, a close particle passage excites Kerr quasinormal modes; these show up as "wiggles" in the local self-force

イロト 不得下 イヨト イヨト 二日

2016-06-29

18 / 18

are caustic crossings also important?

Methods

- effective source/puncture field regularization works very well
- Zenginoğlu's hyperboloidal slices work very well
- moving worldtube allows highly-eccentric orbits
   we have done up to e = 0.98

  - higher is possible but expensive with current code
- details → Thornburg & Wardell, arXiv:1607.????

Wiggles

- if high Kerr spin, a close particle passage excites Kerr quasinormal modes; these show up as "wiggles" in the local self-force
- are caustic crossings also important?
- Maarten van de Meent has now found wiggles in  $\Psi_4$  flux at  $\mathcal{J}^+$

イロト 不得下 イヨト イヨト 二日

Methods

- effective source/puncture field regularization works very well
- Zenginoğlu's hyperboloidal slices work very well
- moving worldtube allows highly-eccentric orbits
   we have done up to e = 0.98

  - higher is possible but expensive with current code
- details → Thornburg & Wardell, arXiv:1607.????

Wiggles

 if high Kerr spin, a close particle passage excites Kerr quasinormal modes; these show up as "wiggles" in the local self-force

イロト 不得下 イヨト イヨト 二日

2016-06-29

18 / 18

- are caustic crossings also important?
- Maarten van de Meent has now found wiggles in  $\Psi_4$  flux at  $\mathcal{J}^+$

Gravitation [Joint work with Sam Dolan]

- \* May have found a way to stabilize Lorenz gauge modes
  - $\Rightarrow$  can do gravitational self-force etc.

Jonathan Thornburg / Capra 19 @ Meudon