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• eLISA EMRIs: likely have e up to ∼ 0.8
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Goals
• Kerr

• highly-eccentric orbits:

• eLISA EMRIs: likely have e up to ∼ 0.8
• eLISA IMRIs (likely rare, but maybe very strong sources if they exist):

may have e up to ∼ 0.998

• [now] (bound, geodesic) equatorial orbits: [future] inclined (generic geodesic)

• compute self-force (all around fixed orbit)

⇒ easy access to ∆geodesic per orbit, but we haven’t done this yet
⇒ [easy access to emitted radiation at J +, but we haven’t done this yet]

Limitations

• O(µ)

• scalar field; develop techniques for gravitational field (Lorenz-gauge)

⋆ may have a solution to Lorenz gauge instabilities [with Sam Dolan]
⇒ if this works, then extension to gravitational field looks doable
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m-mode (e imφ) decomposition, time-domain evolution
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• 4th order effective source and puncture field

• scalar field for now
• gravitational field ⇒ Lorenz-gauge instabilities [Dolan & Barack]

may have a solution to these [joint with Dolan]

m-mode (e imφ) decomposition, time-domain evolution

• exploit axisymmetry of Kerr background

• can handle (almost) any orbit, including high eccentricity

• separate 2+1-dimensional time-domain (numerical) evolution for each m

• presently equatorial orbits, but no serious obstacles to generic orbits

• worldtube scheme

• worldtube moves in (r , θ) to follow the particle around the orbit

• hyperboloidal slices (reach horizon and J +)
[Zenginoğlu, arXiv:1008.3809 = J. Comp. Phys. 230, 2286]
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Effective-Source (puncture-field) regularization

• 4th order effective source and puncture field

• scalar field for now
• gravitational field ⇒ Lorenz-gauge instabilities [Dolan & Barack]

may have a solution to these [joint with Dolan]

m-mode (e imφ) decomposition, time-domain evolution

• exploit axisymmetry of Kerr background

• can handle (almost) any orbit, including high eccentricity

• separate 2+1-dimensional time-domain (numerical) evolution for each m

• presently equatorial orbits, but no serious obstacles to generic orbits

• worldtube scheme

• worldtube moves in (r , θ) to follow the particle around the orbit

• hyperboloidal slices (reach horizon and J +)
[Zenginoğlu, arXiv:1008.3809 = J. Comp. Phys. 230, 2286]

• (fixed) mesh refinement; some (finer) grids follow the worldtube/particle
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Effective source (puncture field) regularization

Assume a δ-function particle with scalar charge q.

The particle’s physical (retarded) scalar field ϕ satisfies �ϕ = δ
(

x − xparticle(t)
)

.
ϕ is singular at the particle.

Jonathan Thornburg / Capra 19 @ Meudon 2016-06-29 4 / 18



Effective source (puncture field) regularization

Assume a δ-function particle with scalar charge q.

The particle’s physical (retarded) scalar field ϕ satisfies �ϕ = δ
(

x − xparticle(t)
)

.
ϕ is singular at the particle.

If we knew the Detwiler-Whiting decomposition ϕ = ϕsingular + ϕregular explicitly,
we could compute the self-force via Fa = q(∇aϕregular)

∣

∣

particle
.

Jonathan Thornburg / Capra 19 @ Meudon 2016-06-29 4 / 18



Effective source (puncture field) regularization

Assume a δ-function particle with scalar charge q.

The particle’s physical (retarded) scalar field ϕ satisfies �ϕ = δ
(

x − xparticle(t)
)

.
ϕ is singular at the particle.

If we knew the Detwiler-Whiting decomposition ϕ = ϕsingular + ϕregular explicitly,
we could compute the self-force via Fa = q(∇aϕregular)

∣

∣

particle
. But it’s very hard

to explicly compute the decomposition.

Instead we choose ϕpuncture ≈ ϕsingular so that ϕresidual := ϕ− ϕpuncture

is finite and “differentiable enough” at the particle.

Jonathan Thornburg / Capra 19 @ Meudon 2016-06-29 4 / 18



Effective source (puncture field) regularization

Assume a δ-function particle with scalar charge q.

The particle’s physical (retarded) scalar field ϕ satisfies �ϕ = δ
(

x − xparticle(t)
)

.
ϕ is singular at the particle.
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we could compute the self-force via Fa = q(∇aϕregular)

∣

∣

particle
. But it’s very hard

to explicly compute the decomposition.

Instead we choose ϕpuncture ≈ ϕsingular so that ϕresidual := ϕ− ϕpuncture

is finite and “differentiable enough” at the particle. It’s then easy to see that

�ϕresidual =

{

0 at the particle
−�ϕpuncture elsewhere

}

:= Seffective

If we can solve this equation for ϕresidual, then we can compute the self-force
(exactly!) via Fa = q(∇aϕresidual)

∣

∣

particle
.
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Puncture field and effective source

We choose ϕpuncture so that |ϕpuncture − ϕsingular| = O
(

‖x − xparticle‖
n
)

where the puncture order n ≥ 2 is a parameter.

ϕresidual is then C n−2 at the particle, and Seffective is C0.
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We choose ϕpuncture so that |ϕpuncture − ϕsingular| = O
(

‖x − xparticle‖
n
)

where the puncture order n ≥ 2 is a parameter.

ϕresidual is then C n−2 at the particle, and Seffective is C0.

The choice of the puncture order n is a tradeoff:
Higher n ⇒ ϕresidual is smoother at the particle (good),
but ϕpuncture and Seffective are more complicated (expensive) to compute.

We choose n = 4 ⇒ ϕresidual is C
2 at the particle.

The actual computation of ϕpuncture and Seffective involves lengthly series
expansions in Mathematica, then machine-generated C code. See
Wardell, Vega, Thornburg, and Diener, PRD 85, 104044 (2012) = arXiv:1112.6355

for details.

Computing Seffective at a single event requires ∼ 1
2 × 106 arithmetic operations.
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The worldtube

Problems:

• ϕpuncture and Seffective are only defined in a neighbourhood of the particle
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The worldtube

Problems:

• ϕpuncture and Seffective are only defined in a neighbourhood of the particle

• far-field outgoing-radiation BCs apply to ϕ, not ϕresidual

Solution:

introduce finite worldtube containing the particle worldline

• define “numerical field” ϕnumerical =

{

ϕresidual inside the worldtube
ϕ outside the worldtube

• compute ϕnumerical by numerically solving

�ϕnumerical =

{

Seffective inside the worldtube
0 outside the worldtube
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The worldtube

Problems:

• ϕpuncture and Seffective are only defined in a neighbourhood of the particle

• far-field outgoing-radiation BCs apply to ϕ, not ϕresidual

Solution:

introduce finite worldtube containing the particle worldline

• define “numerical field” ϕnumerical =

{

ϕresidual inside the worldtube
ϕ outside the worldtube

• compute ϕnumerical by numerically solving

�ϕnumerical =

{

Seffective inside the worldtube
0 outside the worldtube

• now Seffective is only needed inside the worldtube

• ϕnumerical has a ±ϕpuncture jump discontinuity across worldtube boundary
⇒ finite difference operators that cross the worldtube boundary

must compensate for the jump discontinuity
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m-mode decomposition

Instead of numerically solving �ϕnumerical =

{

Seffective inside the worldtube
0 outside the worldtube

in 3+1 dimensions, we Fourier-decompose into e imφ modes and solve for each
Fourier mode in 2+1 dimensions via

�m ϕnumerical,m =

{

Seffective,m inside the worldtube
0 outside the worldtube







numerically

solve this

for each m

in 2+1D







The self-force is given (exactly!) by Fa = q
∞
∑

m=0

(∇aϕnumerical,m)
∣

∣

particle
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{
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numerically

solve this

for each m

in 2+1D







The self-force is given (exactly!) by Fa = q
∞
∑

m=0

(∇aϕnumerical,m)
∣

∣

particle

Advantages (vs. direct solution in 3 + 1 dimensions):

• can use different numerical parameters for different m

⋆ (this is crucial for our hoped-for solution to the
Lorenz-gauge instabilities in the gravitational case)

• each individual m’s evolution is smaller ⇒ test/debug code on laptop

• get moderate parallelism “for free” (run different m’s evolutions in parallel)
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Moving the worldtube

We actually do m-mode decomposition before introducing worldtube
⇒ worldtube “lives” in (t, r , θ) space, not full spacetime

The worldtube must contain the particle in (r , θ).
But for a non-circular orbit, the particle moves in (r , θ) during the orbit.
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Moving the worldtube

We actually do m-mode decomposition before introducing worldtube
⇒ worldtube “lives” in (t, r , θ) space, not full spacetime

The worldtube must contain the particle in (r , θ).
But for a non-circular orbit, the particle moves in (r , θ) during the orbit.

Small eccentricity: can use a worldtube big enough to contain the entire orbit

Large eccentricity:

• must move the worldtube in (r , θ) to follow the particle around the orbit

• recall that our numerically-evolved field is

ϕnumerical :=

{

ϕ− ϕpuncture inside the worldtube
ϕ outside the worldtube

this means then if we move the worldtube, we must adjust the evolved
ϕnumerical: add ±ϕpuncture at spatial points which change from being inside
the worldtube to being outside, or vice versa
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Code Validation

Comparison with
frequency-domain
results kindly provided
by Niels Warburton
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Code Validation

Comparison with
frequency-domain
results kindly provided
by Niels Warburton

Typical example:
(a, p, e) = (0.9, 10M , 0.5)
⇒ results agree to

∼ 10−5 relative error

We have also compared
a variety of other
configurations, with
fairly similar results
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e = 0.8 orbit

(a, p, e) = (0.6, 8M , 0.8)
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e = 0.8 orbit
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Notice the “bump” in Fr

near r = 15M moving outwards

Maybe a caustic crossing?
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Wiggles!

Higher-eccentricity orbit:
(a, p, e) = (0.99, 7M , 0.9)

t
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Wiggles!

Higher-eccentricity orbit:
(a, p, e) = (0.99, 7M , 0.9)

t
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Notice:

• wiggles on outgoing leg of orbit

• wiggles not seen on ingoing leg
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Wiggles as Kerr Quasinormal Modes: Mode Fit

Leor Barack suggested that wiggles might be quasinormal modes of the
(background) Kerr spacetime, excited by the particle’s close flyby. Test this by
fitting decay of wiggles to a damped sinusoid with corrections for motion of the
observer (particle):

rF [m=1]
r

(u) = background(u) + A exp
(

−
u − u0

τ

)

sin
(

φ0 + 2π
u − u0

T

)

where u := t − r∗

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

wiggle period = 12.892

wiggle 1/e decay time = 25.142
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data (orbit 5)
fn(u)
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Wiggles as Kerr Quasinormal Modes: Mode Frequencies

Now compare wiggle-fit complex frequency ω := 2π/T − i/τ
vs. known Kerr quasinormal mode frequencies computed by Emanuele Berti.
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Wiggles as Kerr Quasinormal Modes: Mode Frequencies

Now compare wiggle-fit complex frequency ω := 2π/T − i/τ
vs. known Kerr quasinormal mode frequencies computed by Emanuele Berti.

⇒ Nice agreement with least-damped corotating QNM!
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Wiggles as Kerr Quasinormal Modes: Varying BH Spin

Repeat wiggle-fit procedure for other Kerr spins (0.99, 0.95, 0.9, and 0.8)
⇒ Nice agreement with least-damped corotating QNM for all BH spins!
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We now see wiggles for
many configurations with

• high Kerr spin

• highly-eccentric
prograde orbit
with close-in
periastron
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We now see wiggles for
many configurations with

• high Kerr spin

• highly-eccentric
prograde orbit
with close-in
periastron

Note non-sinsoidal
wiggle shapes
⇒ multiple QNMs?

maybe caustic crossings
are also important?
(Ottewill & Wardell)
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Gravitation: Unstable Lorenz Gauge Modes

How to extend this work to the full gravitational field?

• Work in Lorenz gauge ⇒ metric perturbation is isotropic at the particle.

• The effective-source (puncture-field) regularization works fine for the
gravitational case.
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4 evolution
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(Maybe) Stabilizing the m = 1 Lorenz Gauge Mode

Basic idea (schematic): [Joint work with Sam Dolan]

• First define (choose) an inner product on state vectors u.

• Then compute the growing mode G(t, x i ) := tugrowing(x
i ). Notice that this

is a homogeneous solution of the evolution equation. ugrowing depends only
on the spacetime, not on the initial data or particle orbit.
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This seems to work: evolutions are stable!

• Now trying it for sourced evolution. . .
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Conclusions

Methods

• effective source/puncture field regularization works very well

• Zenginoğlu’s hyperboloidal slices work very well
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• higher is possible but expensive with current code

• details → Thornburg & Wardell, arXiv:1607.?????
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• are caustic crossings also important?

• Maarten van de Meent has now found wiggles in Ψ4 flux at J +

Gravitation [Joint work with Sam Dolan]

⋆ May have found a way to stabilize Lorenz gauge modes
⇒ can do gravitational self-force etc.
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