Scalar self-force for highly eccentric orbits in Kerr spacetime

Jonathan Thornburg

in collaboration with

Barry Wardell

Department of Astronomy and
Center for Spacetime Symmetries Indiana University
Bloomington, Indiana, USA

Department of Astronomy
Cornell University Ithaca, New York, USA

Goals

- Kerr
- highly-eccentric orbits:
- eLISA EMRIs: likely have e up to ~ 0.8

Goals

- Kerr
- highly-eccentric orbits:
- eLISA EMRIs: likely have e up to ~ 0.8
- eLISA IMRIs (likely rare, but maybe very strong sources if they exist): may have e up to ~ 0.998

Goals

- Kerr
- highly-eccentric orbits:
- eLISA EMRIs: likely have e up to ~ 0.8
- eLISA IMRIs (likely rare, but maybe very strong sources if they exist): may have e up to ~ 0.998
- [now] (bound, geodesic) equatorial orbits: [future] inclined (generic geodesic)
- compute self-force (all around fixed orbit)

Goals

- Kerr
- highly-eccentric orbits:
- eLISA EMRIs: likely have e up to ~ 0.8
- eLISA IMRIs (likely rare, but maybe very strong sources if they exist): may have e up to ~ 0.998
- [now] (bound, geodesic) equatorial orbits: [future] inclined (generic geodesic)
- compute self-force (all around fixed orbit)
\Rightarrow easy access to Δ geodesic per orbit, but we haven't done this yet
\Rightarrow [easy access to emitted radiation at \mathcal{J}^{+}, but we haven't done this yet]

Goals

- Kerr
- highly-eccentric orbits:
- eLISA EMRIs: likely have e up to ~ 0.8
- eLISA IMRIs (likely rare, but maybe very strong sources if they exist): may have e up to ~ 0.998
- [now] (bound, geodesic) equatorial orbits: [future] inclined (generic geodesic)
- compute self-force (all around fixed orbit)
\Rightarrow easy access to Δ geodesic per orbit, but we haven't done this yet
\Rightarrow [easy access to emitted radiation at \mathcal{J}^{+}, but we haven't done this yet]

Limitations

- $\mathcal{O}(\mu)$
- scalar field; develop techniques for gravitational field (Lorenz-gauge)

Goals

- Kerr
- highly-eccentric orbits:
- eLISA EMRIs: likely have e up to ~ 0.8
- eLISA IMRIs (likely rare, but maybe very strong sources if they exist): may have e up to ~ 0.998
- [now] (bound, geodesic) equatorial orbits: [future] inclined (generic geodesic)
- compute self-force (all around fixed orbit)
\Rightarrow easy access to Δ geodesic per orbit, but we haven't done this yet
\Rightarrow [easy access to emitted radiation at \mathcal{J}^{+}, but we haven't done this yet]

Limitations

- $\mathcal{O}(\mu)$
- scalar field; develop techniques for gravitational field (Lorenz-gauge)
* may have a solution to Lorenz gauge instabilities [with Sam Dolan] \Rightarrow if this works, then extension to gravitational field looks doable

Overall Plan of the Computation

Effective-Source (puncture-field) regularization

Overall Plan of the Computation

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
- gravitational field \Rightarrow Lorenz-gauge instabilities [Dolan \& Barack]

Overall Plan of the Computation

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
- gravitational field \Rightarrow Lorenz-gauge instabilities [Dolan \& Barack] may have a solution to these [joint with Dolan]

Overall Plan of the Computation

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
- gravitational field \Rightarrow Lorenz-gauge instabilities [Dolan \& Barack] may have a solution to these [joint with Dolan]
m-mode ($e^{i m \phi}$) decomposition, time-domain evolution
- exploit axisymmetry of Kerr background
- can handle (almost) any orbit, including high eccentricity
- separate $2+1$-dimensional time-domain (numerical) evolution for each m
- presently equatorial orbits, but no serious obstacles to generic orbits

Overall Plan of the Computation

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
- gravitational field \Rightarrow Lorenz-gauge instabilities [Dolan \& Barack] may have a solution to these [joint with Dolan]
m-mode ($e^{i m \phi}$) decomposition, time-domain evolution
- exploit axisymmetry of Kerr background
- can handle (almost) any orbit, including high eccentricity
- separate 2+1-dimensional time-domain (numerical) evolution for each m
- presently equatorial orbits, but no serious obstacles to generic orbits
- worldtube scheme
- worldtube moves in (r, θ) to follow the particle around the orbit

Overall Plan of the Computation

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
- gravitational field \Rightarrow Lorenz-gauge instabilities [Dolan \& Barack] may have a solution to these [joint with Dolan]
m-mode ($e^{i m \phi}$) decomposition, time-domain evolution
- exploit axisymmetry of Kerr background
- can handle (almost) any orbit, including high eccentricity
- separate 2+1-dimensional time-domain (numerical) evolution for each m
- presently equatorial orbits, but no serious obstacles to generic orbits
- worldtube scheme
- worldtube moves in (r, θ) to follow the particle around the orbit
- hyperboloidal slices (reach horizon and \mathcal{J}^{+})
[Zenginoğlu, arXiv:1008.3809 = J. Comp. Phys. 230, 2286]

Overall Plan of the Computation

Effective-Source (puncture-field) regularization

- 4th order effective source and puncture field
- scalar field for now
- gravitational field \Rightarrow Lorenz-gauge instabilities [Dolan \& Barack] may have a solution to these [joint with Dolan]
m-mode ($e^{i m \phi}$) decomposition, time-domain evolution
- exploit axisymmetry of Kerr background
- can handle (almost) any orbit, including high eccentricity
- separate 2+1-dimensional time-domain (numerical) evolution for each m
- presently equatorial orbits, but no serious obstacles to generic orbits
- worldtube scheme
- worldtube moves in (r, θ) to follow the particle around the orbit
- hyperboloidal slices (reach horizon and \mathcal{J}^{+})
[Zenginoğlu, arXiv:1008.3809 = J. Comp. Phys. 230, 2286]
- (fixed) mesh refinement; some (finer) grids follow the worldtube/particle

Effective source (puncture field) regularization

Assume a δ-function particle with scalar charge q.
The particle's physical (retarded) scalar field φ satisfies $\square \varphi=\delta\left(x-x_{\text {particle }}(t)\right)$. φ is singular at the particle.

Effective source (puncture field) regularization

Assume a δ-function particle with scalar charge q.
The particle's physical (retarded) scalar field φ satisfies $\square \varphi=\delta\left(x-x_{\text {particle }}(t)\right)$. φ is singular at the particle.

If we knew the Detwiler-Whiting decomposition $\varphi=\varphi_{\text {singular }}+\varphi_{\text {regular }}$ explicitly, we could compute the self-force via $F_{a}=\left.q\left(\nabla_{a} \varphi_{\text {regular }}\right)\right|_{\text {particle }}$.

Effective source (puncture field) regularization

Assume a δ-function particle with scalar charge q.
The particle's physical (retarded) scalar field φ satisfies $\square \varphi=\delta\left(x-x_{\text {particle }}(t)\right)$. φ is singular at the particle.

If we knew the Detwiler-Whiting decomposition $\varphi=\varphi_{\text {singular }}+\varphi_{\text {regular }}$ explicitly, we could compute the self-force via $F_{a}=\left.q\left(\nabla_{a} \varphi_{\text {regular }}\right)\right|_{\text {particle }}$. But it's very hard to explicly compute the decomposition.
Instead we choose $\varphi_{\text {puncture }} \approx \varphi_{\text {singular }}$ so that $\varphi_{\text {residual }}:=\varphi-\varphi_{\text {puncture }}$ is finite and "differentiable enough" at the particle.

Effective source (puncture field) regularization

Assume a δ-function particle with scalar charge q.
The particle's physical (retarded) scalar field φ satisfies $\square \varphi=\delta\left(x-x_{\text {particle }}(t)\right)$. φ is singular at the particle.

If we knew the Detwiler-Whiting decomposition $\varphi=\varphi_{\text {singular }}+\varphi_{\text {regular }}$ explicitly, we could compute the self-force via $F_{a}=\left.q\left(\nabla_{a} \varphi_{\text {regular }}\right)\right|_{\text {particle }}$. But it's very hard to explicly compute the decomposition.

Instead we choose $\varphi_{\text {puncture }} \approx \varphi_{\text {singular }}$ so that $\varphi_{\text {residual }}:=\varphi-\varphi_{\text {puncture }}$ is finite and "differentiable enough" at the particle. It's then easy to see that

$$
\square \varphi_{\text {residual }}=\left\{\begin{array}{ll}
0 & \text { at the particle } \\
-\square \varphi_{\text {puncture }} & \text { elsewhere }
\end{array}\right\}:=S_{\text {effective }}
$$

If we can solve this equation for $\varphi_{\text {residual }}$, then we can compute the self-force (exactly!) via $F_{a}=\left.q\left(\nabla_{a} \varphi_{\text {residual }}\right)\right|_{\text {particle }}$.

Puncture field and effective source

We choose $\varphi_{\text {puncture }}$ so that $\left|\varphi_{\text {puncture }}-\varphi_{\text {singular }}\right|=\mathcal{O}\left(\left\|x-x_{\text {particle }}\right\|^{n}\right)$ where the puncture order $n \geq 2$ is a parameter.
$\varphi_{\text {residual }}$ is then C^{n-2} at the particle, and $S_{\text {effective }}$ is C_{0}.

Puncture field and effective source

We choose $\varphi_{\text {puncture }}$ so that $\left|\varphi_{\text {puncture }}-\varphi_{\text {singular }}\right|=\mathcal{O}\left(\left\|x-x_{\text {particle }}\right\|^{n}\right)$ where the puncture order $n \geq 2$ is a parameter.
$\varphi_{\text {residual }}$ is then C^{n-2} at the particle, and $S_{\text {effective }}$ is C_{0}.
The choice of the puncture order n is a tradeoff:
Higher $n \Rightarrow \varphi_{\text {residual }}$ is smoother at the particle (good), but $\varphi_{\text {puncture }}$ and $S_{\text {effective }}$ are more complicated (expensive) to compute. We choose $n=4 \Rightarrow \varphi_{\text {residual }}$ is C^{2} at the particle.

Puncture field and effective source

We choose $\varphi_{\text {puncture }}$ so that $\left|\varphi_{\text {puncture }}-\varphi_{\text {singular }}\right|=\mathcal{O}\left(\left\|x-x_{\text {particle }}\right\|^{n}\right)$ where the puncture order $n \geq 2$ is a parameter.
$\varphi_{\text {residual }}$ is then C^{n-2} at the particle, and $S_{\text {effective }}$ is C_{0}.
The choice of the puncture order n is a tradeoff:
Higher $n \Rightarrow \varphi_{\text {residual }}$ is smoother at the particle (good), but $\varphi_{\text {puncture }}$ and $S_{\text {effective }}$ are more complicated (expensive) to compute.
We choose $n=4 \Rightarrow \varphi_{\text {residual }}$ is C^{2} at the particle.
The actual computation of $\varphi_{\text {puncture }}$ and $S_{\text {effective }}$ involves lengthly series expansions in Mathematica, then machine-generated C code. See Wardell, Vega, Thornburg, and Diener, PRD 85, 104044 (2012) = arXiv:1112.6355 for details.

Computing $S_{\text {effective }}$ at a single event requires $\sim \frac{1}{2} \times 10^{6}$ arithmetic operations.

The worldtube

Problems:

- $\varphi_{\text {puncture }}$ and $S_{\text {effective }}$ are only defined in a neighbourhood of the particle

The worldtube

Problems:

- $\varphi_{\text {puncture }}$ and $S_{\text {effective }}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ, not $\varphi_{\text {residual }}$

The worldtube

Problems:

- $\varphi_{\text {puncture }}$ and $S_{\text {effective }}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ, not $\varphi_{\text {residual }}$

Solution:

introduce finite worldtube containing the particle worldline

- define "numerical field" $\varphi_{\text {numerical }}= \begin{cases}\varphi_{\text {residual }} & \text { inside the worldtube } \\ \varphi & \text { outside the worldtube }\end{cases}$
- compute $\varphi_{\text {numerical }}$ by numerically solving

$$
\square \varphi_{\text {numerical }}= \begin{cases}S_{\text {effective }} & \text { inside the worldtube } \\ 0 & \text { outside the worldtube }\end{cases}
$$

The worldtube

Problems:

- $\varphi_{\text {puncture }}$ and $S_{\text {effective }}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ, not $\varphi_{\text {residual }}$

Solution:

introduce finite worldtube containing the particle worldline

- define "numerical field" $\varphi_{\text {numerical }}= \begin{cases}\varphi_{\text {residual }} & \text { inside the worldtube } \\ \varphi & \text { outside the worldtube }\end{cases}$
- compute $\varphi_{\text {numerical }}$ by numerically solving

$$
\square \varphi_{\text {numerical }}= \begin{cases}S_{\text {effective }} & \text { inside the worldtube } \\ 0 & \text { outside the worldtube }\end{cases}
$$

- now $S_{\text {effective }}$ is only needed inside the worldtube

The worldtube

Problems:

- $\varphi_{\text {puncture }}$ and $S_{\text {effective }}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ, not $\varphi_{\text {residual }}$

Solution:

introduce finite worldtube containing the particle worldline

- define "numerical field" $\varphi_{\text {numerical }}= \begin{cases}\varphi_{\text {residual }} & \text { inside the worldtube } \\ \varphi & \text { outside the worldtube }\end{cases}$
- compute $\varphi_{\text {numerical }}$ by numerically solving

$$
\square \varphi_{\text {numerical }}= \begin{cases}S_{\text {effective }} & \text { inside the worldtube } \\ 0 & \text { outside the worldtube }\end{cases}
$$

- now $S_{\text {effective }}$ is only needed inside the worldtube
- $\varphi_{\text {numerical }}$ has a $\pm \varphi_{\text {puncture }}$ jump discontinuity across worldtube boundary \Rightarrow finite difference operators that cross the worldtube boundary must compensate for the jump discontinuity

m-mode decomposition

Instead of numerically solving $\square \varphi_{\text {numerical }}= \begin{cases}S_{\text {effective }} & \text { inside the worldtube } \\ 0 & \text { outside the worldtube }\end{cases}$ in $3+1$ dimensions, we Fourier-decompose into $e^{i m \phi}$ modes and solve for each Fourier mode in $2+1$ dimensions via

$$
\square_{m} \varphi_{\text {numerical }, m}= \begin{cases}S_{\text {effective }, m} & \text { inside the worldtube } \\ 0 & \text { outside the worldtube }\end{cases}
$$

$\left[\begin{array}{l}\text { numerically } \\ \text { solve this } \\ \text { for each } m \\ \text { in } 2+1 D\end{array}\right]$

The self-force is given (exactly!) by $F_{a}=\left.q \sum_{m=0}^{\infty}\left(\nabla_{a} \varphi_{\text {numerical }, m}\right)\right|_{\text {particle }}$

m-mode decomposition

Instead of numerically solving $\square \varphi_{\text {numerical }}= \begin{cases}S_{\text {effective }} & \text { inside the worldtube } \\ 0 & \text { outside the worldtube }\end{cases}$ in $3+1$ dimensions, we Fourier-decompose into $e^{i m \phi}$ modes and solve for each Fourier mode in $2+1$ dimensions via

$$
\square_{m} \varphi_{\text {numerical }, m}= \begin{cases}S_{\text {effective }, m} & \text { inside the worldtube } \\ 0 & \text { outside the worldtube }\end{cases}
$$

$$
\left[\begin{array}{l}
\text { numerically } \\
\text { solve this } \\
\text { for each } m \\
\text { in } 2+1 D
\end{array}\right]
$$

The self-force is given (exactly!) by $F_{a}=\left.q \sum_{m=0}^{\infty}\left(\nabla_{a} \varphi_{\text {numerical, } m}\right)\right|_{\text {particle }}$
Advantages (vs. direct solution in $3+1$ dimensions):

- can use different numerical parameters for different m
* (this is crucial for our hoped-for solution to the Lorenz-gauge instabilities in the gravitational case)
- each individual m 's evolution is smaller \Rightarrow test/debug code on laptop
- get moderate parallelism "for free" (run different m 's evolutions in parallel)

Moving the worldtube

We actually do m-mode decomposition before introducing worldtube \Rightarrow worldtube "lives" in (t, r, θ) space, not full spacetime
The worldtube must contain the particle in (r, θ).
But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

Moving the worldtube

We actually do m-mode decomposition before introducing worldtube \Rightarrow worldtube "lives" in (t, r, θ) space, not full spacetime
The worldtube must contain the particle in (r, θ).
But for a non-circular orbit, the particle moves in (r, θ) during the orbit.
Small eccentricity: can use a worldtube big enough to contain the entire orbit

Moving the worldtube

We actually do m-mode decomposition before introducing worldtube \Rightarrow worldtube "lives" in (t, r, θ) space, not full spacetime
The worldtube must contain the particle in (r, θ).
But for a non-circular orbit, the particle moves in (r, θ) during the orbit.
Small eccentricity: can use a worldtube big enough to contain the entire orbit
Large eccentricity:

- must move the worldtube in (r, θ) to follow the particle around the orbit

Moving the worldtube

We actually do m-mode decomposition before introducing worldtube \Rightarrow worldtube "lives" in (t, r, θ) space, not full spacetime
The worldtube must contain the particle in (r, θ).
But for a non-circular orbit, the particle moves in (r, θ) during the orbit.
Small eccentricity: can use a worldtube big enough to contain the entire orbit

Large eccentricity:

- must move the worldtube in (r, θ) to follow the particle around the orbit
- recall that our numerically-evolved field is

$$
\varphi_{\text {numerical }}:= \begin{cases}\varphi-\varphi_{\text {puncture }} & \text { inside the worldtube } \\ \varphi & \text { outside the worldtube }\end{cases}
$$

this means then if we move the worldtube, we must adjust the evolved $\varphi_{\text {numerical }}:$ add $\pm \varphi_{\text {puncture }}$ at spatial points which change from being inside the worldtube to being outside, or vice versa

Code Validation

Comparison with frequency-domain results kindly provided by Niels Warburton

Code Validation

Comparison with frequency-domain results kindly provided by Niels Warburton

Typical example: $(a, p, e)=(0.9,10 M, 0.5)$
\Rightarrow results agree to
$\sim 10^{-5}$ relative error
We have also compared a variety of other configurations, with fairly similar results

$e=0.8$ orbit

$$
(a, p, e)=(0.6,8 M, 0.8)
$$

$e=0.8$ orbit

$(a, p, e)=(0.6,8 M, 0.8)$

Notice the "bump" in F_{r} near $r=15 \mathrm{M}$ moving outwards

Maybe a caustic crossing?

Wiggles!

Higher-eccentricity orbit:

$$
(a, p, e)=(0.99,7 M, 0.9)
$$

Wiggles!

Higher-eccentricity orbit:

$$
(a, p, e)=(0.99,7 M, 0.9)
$$

Notice:

- wiggles on outgoing leg of orbit
- wiggles not seen on ingoing leg

Wiggles as Kerr Quasinormal Modes: Mode Fit

Leor Barack suggested that wiggles might be quasinormal modes of the (background) Kerr spacetime, excited by the particle's close flyby. Test this by fitting decay of wiggles to a damped sinusoid with corrections for motion of the observer (particle):

$$
r F_{r}^{[m=1]}(u)=\operatorname{background}(u)+A \exp \left(-\frac{u-u_{0}}{\tau}\right) \sin \left(\phi_{0}+2 \pi \frac{u-u_{0}}{T}\right)
$$

where $u:=t-r_{*}$

Wiggles as Kerr Quasinormal Modes: Mode Frequencies

Now compare wiggle-fit complex frequency $\omega:=2 \pi / T-i / \tau$ vs. known Kerr quasinormal mode frequencies computed by Emanuele Berti.

Wiggles as Kerr Quasinormal Modes: Mode Frequencies

Now compare wiggle-fit complex frequency $\omega:=2 \pi / T-i / \tau$ vs. known Kerr quasinormal mode frequencies computed by Emanuele Berti.
\Rightarrow Nice agreement with least-damped corotating QNM!

Wiggles as Kerr Quasinormal Modes: Varying BH Spin

Repeat wiggle-fit procedure for other Kerr spins ($0.99,0.95,0.9$, and 0.8) \Rightarrow Nice agreement with least-damped corotating QNM for all BH spins!

$a=0.9$

$a=0.95$
spin=0.95 $p=7 \mathrm{M} \mathrm{e}=0.9 \quad \mathrm{rF}_{\mathrm{r}}(\mathrm{u}=\mathrm{t}-\mathrm{r} \mathrm{r}$) wiggles decay vs Kerr QNM s

$a=0.8$
spin $=0.8 \quad p=7 \mathrm{M} \mathrm{e}=0.9 \quad r F_{r}\left(u=t-r_{*}\right)$ wiggles decay vs Kerr QNMs

More wiggles

We now see wiggles for many configurations with

- high Kerr spin
- highly-eccentric prograde orbit with close-in periastron

More wiggles

We now see wiggles for many configurations with

- high Kerr spin
- highly-eccentric prograde orbit with close-in periastron

Note non-sinsoidal wiggle shapes \Rightarrow multiple QNMs?
maybe caustic crossings are also important? (Ottewill \& Wardell)

Gravitation: Unstable Lorenz Gauge Modes

How to extend this work to the full gravitational field?

- Work in Lorenz gauge \Rightarrow metric perturbation is isotropic at the particle.
- The effective-source (puncture-field) regularization works fine for the gravitational case.

Gravitation: Unstable Lorenz Gauge Modes

How to extend this work to the full gravitational field?

- Work in Lorenz gauge \Rightarrow metric perturbation is isotropic at the particle.
- The effective-source (puncture-field) regularization works fine for the gravitational case.
- Dolan and Barack [PRD 87, 084066 (2013) = arXiv:1211.4586] found that the $m=0$ and $m=1$ modes have Lorenz gauge instabilities. These are modes which are consistent with the Lorenz gauge condition at any finite time, but blow up as $t \rightarrow \infty$. They were able to stabilize the $m=0$ mode using a dynamically-driven generalized Lorenz gauge (analogous to the \mathbb{Z}^{4} evolution system in full nonlinear numerical relativity).
- They were not able to stabilize the $m=1$ mode. The instability is linear in time.

(Maybe) Stabilizing the $m=1$ Lorenz Gauge Mode

Basic idea (schematic): [Joint work with Sam Dolan]

- First define (choose) an inner product on state vectors \mathbf{u}.
- Then compute the growing mode $G\left(t, x^{i}\right):=t \mathbf{u}_{\text {growing }}\left(x^{i}\right)$. Notice that this is a homogeneous solution of the evolution equation. $\mathbf{u}_{\text {growing }}$ depends only on the spacetime, not on the initial data or particle orbit.

(Maybe) Stabilizing the $m=1$ Lorenz Gauge Mode

Basic idea (schematic): [Joint work with Sam Dolan]

- First define (choose) an inner product on state vectors \mathbf{u}.
- Then compute the growing mode $G\left(t, x^{i}\right):=t \mathbf{u}_{\text {growing }}\left(x^{i}\right)$. Notice that this is a homogeneous solution of the evolution equation. $\mathbf{u}_{\text {growing }}$ depends only on the spacetime, not on the initial data or particle orbit.
- Write $m=1$ gravitational perturbation evolution as $\frac{d \mathbf{u}}{d t}=R(\mathbf{u})$

(Maybe) Stabilizing the $m=1$ Lorenz Gauge Mode

Basic idea (schematic): [Joint work with Sam Dolan]

- First define (choose) an inner product on state vectors \mathbf{u}.
- Then compute the growing mode $G\left(t, x^{i}\right):=t \mathbf{u}_{\text {growing }}\left(x^{i}\right)$. Notice that this is a homogeneous solution of the evolution equation. $\mathbf{u}_{\text {growing }}$ depends only on the spacetime, not on the initial data or particle orbit.
- Write $m=1$ gravitational perturbation evolution as $\frac{d \mathbf{u}}{d t}=R(\mathbf{u})$
- Replace evolution eqn with $\frac{d \mathbf{u}}{d t}=\tilde{R}(\mathbf{u})$ where $\tilde{R}(\mathbf{u}):=R(\mathbf{u})+\lambda \mathbf{u}_{\text {growing }}$
- Choose (update) λ "every so often" such that $\tilde{R}(\mathbf{u}) \perp \mathbf{u}_{\text {growing }}$ (\perp w.r.t. our chosen inner product).

(Maybe) Stabilizing the $m=1$ Lorenz Gauge Mode

Basic idea (schematic): [Joint work with Sam Dolan]

- First define (choose) an inner product on state vectors \mathbf{u}.
- Then compute the growing mode $G\left(t, x^{i}\right):=t \mathbf{u}_{\text {growing }}\left(x^{i}\right)$. Notice that this is a homogeneous solution of the evolution equation. $\mathbf{u}_{\text {growing }}$ depends only on the spacetime, not on the initial data or particle orbit.
- Write $m=1$ gravitational perturbation evolution as $\frac{d \mathbf{u}}{d t}=R(\mathbf{u})$
- Replace evolution eqn with $\frac{d \mathbf{u}}{d t}=\tilde{R}(\mathbf{u})$ where $\tilde{R}(\mathbf{u}):=R(\mathbf{u})+\lambda \mathbf{u}_{\text {growing }}$
- Choose (update) λ "every so often" such that $\tilde{R}(\mathbf{u}) \perp \mathbf{u}_{\text {growing }}$ (\perp w.r.t. our chosen inner product).
- This is equivalent to Gram-Schmidt orthogonalizing \tilde{R} w.r.t. $\mathbf{u}_{\text {growing }}$.

(Maybe) Stabilizing the $m=1$ Lorenz Gauge Mode

Basic idea (schematic): [Joint work with Sam Dolan]

- First define (choose) an inner product on state vectors \mathbf{u}.
- Then compute the growing mode $G\left(t, x^{i}\right):=t \mathbf{u}_{\text {growing }}\left(x^{i}\right)$. Notice that this is a homogeneous solution of the evolution equation. $\mathbf{u g}_{\text {growing }}$ depends only on the spacetime, not on the initial data or particle orbit.
- Write $m=1$ gravitational perturbation evolution as $\frac{d \mathbf{u}}{d t}=R(\mathbf{u})$
- Replace evolution eqn with $\frac{d \mathbf{u}}{d t}=\tilde{R}(\mathbf{u})$ where $\tilde{R}(\mathbf{u}):=R(\mathbf{u})+\lambda \mathbf{u}_{\text {growing }}$
- Choose (update) λ "every so often" such that $\tilde{R}(\mathbf{u}) \perp \mathbf{u}_{\text {growing }}$ (\perp w.r.t. our chosen inner product).
- This is equivalent to Gram-Schmidt orthogonalizing \tilde{R} w.r.t. $\mathbf{u}_{\text {growing }}$.

This seems to work: evolutions are stable!

- Now trying it for sourced evolution...

Conclusions

Methods

- effective source/puncture field regularization works very well
- Zenginoğlu's hyperboloidal slices work very well

Conclusions

Methods

- effective source/puncture field regularization works very well
- Zenginoğlu's hyperboloidal slices work very well
- moving worldtube allows highly-eccentric orbits
- we have done up to $e=0.98$
- higher is possible but expensive with current code
- details \rightarrow Thornburg \& Wardell, arXiv:1607.?????

Conclusions

Methods

- effective source/puncture field regularization works very well
- Zenginoğlu's hyperboloidal slices work very well
- moving worldtube allows highly-eccentric orbits
- we have done up to $e=0.98$
- higher is possible but expensive with current code
- details \rightarrow Thornburg \& Wardell, arXiv:1607.?????

Wiggles

- if high Kerr spin, a close particle passage excites Kerr quasinormal modes; these show up as "wiggles" in the local self-force
- are caustic crossings also important?

Conclusions

Methods

- effective source/puncture field regularization works very well
- Zenginoğlu's hyperboloidal slices work very well
- moving worldtube allows highly-eccentric orbits
- we have done up to $e=0.98$
- higher is possible but expensive with current code
- details \rightarrow Thornburg \& Wardell, arXiv:1607.?????

Wiggles

- if high Kerr spin, a close particle passage excites Kerr quasinormal modes; these show up as "wiggles" in the local self-force
- are caustic crossings also important?
- Maarten van de Meent has now found wiggles in Ψ_{4} flux at \mathcal{J}^{+}

Conclusions

Methods

- effective source/puncture field regularization works very well
- Zenginoğlu's hyperboloidal slices work very well
- moving worldtube allows highly-eccentric orbits
- we have done up to $e=0.98$
- higher is possible but expensive with current code
- details \rightarrow Thornburg \& Wardell, arXiv:1607.?????

Wiggles

- if high Kerr spin, a close particle passage excites Kerr quasinormal modes; these show up as "wiggles" in the local self-force
- are caustic crossings also important?
- Maarten van de Meent has now found wiggles in Ψ_{4} flux at \mathcal{J}^{+}

Gravitation [Joint work with Sam Dolan]

* May have found a way to stabilize Lorenz gauge modes \Rightarrow can do gravitational self-force etc.

