Preparations for Second-Order Self-Force Calculations

Jonathan Thompson

Department of Physics University of Florida

June 28, 2016

Capra 19

Steve Detweiler: In Memoriam

Introduction

- Review of Perturbation Theory
- Setting Up the Second-Order Problem
- Detweiler's Second-Order Formalism
- Local Singular Field

Perturbation Theory Primer

We begin by assuming the small mass m is a compact object (point particle) moving along a geodesic of the background, γ_0 .

• We model the physical spacetime in a perturbative manner,

$$g_{ab} = g_{ab}^0 + h_{ab},$$

where g_{ab}^0 is the Schwarzschild metric and $h_{ab} \sim O(m)$.

• Expand $G_{ab}(g^0 + h)$ about the background g^0 :

 $G_{ab}(g^0 + h) = G^{(1)}_{ab}(g^0, h) + G^{(2)}_{ab}(g^0, h) + \cdots,$

with $G_{ab}^{(n)}(g^0,h) \sim O(m^n)$.

• Given the perturbing stress-energy tensor $T_{ab}(\gamma_0) \sim O(m)$, the Einstein equations may be written to first-order in m as

$$G_{ab}^{(1)}(g^0, h^{1, \text{ret}}) = 8\pi T_{ab}(\gamma_0) + O(m^2),$$

Perturbation Theory Primer

• Decompose the retarded metric perturbation $h_{ab}^{1,ret}$ into a locally-defined singular term, h_{ab}^{1S} , and a non-local, regular term h_{ab}^{1R} ,

$$G_{ab}^{(1)}(g^0, h^{1S}) = T_{ab}(\gamma_0), \qquad G_{ab}^{(1)}(g^0, h^{1R}) = 0.$$

• Through mode-sum regularization techniques¹, we remove the singular behavior of the retarded field by subtraction; schematically this is written as a difference of the retarded and singular fields,

$$h_{ab}^{\mathsf{R}} = h_{ab}^{\mathsf{ret}} - h_{ab}^{\mathsf{S}}.$$

¹L. Barack and A. Ori, Phys. Rev. D **61** 061502 (2000) Capra 19 5

Preparations for Second-Order

Given h_{ab}^{1R} , the regularized vacuum solution to the Einstein equations at O(m), we adopt the notion of geodesic motion in the "regularly perturbed" spacetime at first-order, since

 $G_{ab}(g^0 + h^{1R}) = O(m^2)$

implies that an observer local to the particle will be unable to distinguish h_{ab}^{1R} from the background geometry.

When expressed on g^0 , the worldline of the particle is perturbed away from the background geodesic by an O(m) correction,

 $\gamma_0 \rightarrow \gamma_0 + \gamma_{1R},$

which is determined by solving the first-order geodesic equation,

$$\frac{\mathrm{d}u_a}{\mathrm{d}s} = \frac{1}{2}u^b u^c \frac{\partial}{\partial x^a} \left(g^0_{ab} + h^{1\mathsf{R}}_{ab}\right).$$

Capra 19

Preparations for Second-Order

In the case of circular orbits, the orbital frequency of the particle is adjusted in $g^0 + h^{1R}$,

$$\Omega^2 = \frac{M}{r^3} - \frac{r-3M}{2r^2} \bar{u}^a \bar{u}^b \partial_r h^{1R}_{ab} + O(m^2).$$

Focusing on the conservative self-force effects, the orbit remains circular; the self-force effects shift the particle's orbital radius,

$$r_{\rm new} = r_{\rm old} - \frac{r^2(r-3M)}{6M} \bar{u}^a \bar{u}^b \partial_r h_{ab}^{1R},$$

bringing the orbital frequency into the expected form,

$$\Omega^2 = \frac{M}{r_{\rm new}^3} + O(m^2).$$

Capra 19

Second-Order Equations*

One anticipates that second-order perturbations will now follow (almost) exactly as the first-order:

 $G_{ab}(g^0 + h^{1R}, h^{1S} + h^2) = T_{ab}(\gamma_0 + \gamma_{1R}) + O(m^3).$

We may even expand both sides,

$$\begin{aligned} G^{(1)}_{ab}(g^0,h^1) + G^{(1)}_{ab}(g^0,h^2) + G^{(2)}_{ab}(g^0,h^1) \\ &= 8\pi T^{(1)}_{ab}(\gamma_0) + 8\pi T^{(2)}_{ab}(\gamma_0,\gamma_1) + \mathcal{O}(m^3). \end{aligned}$$

With the deviation to the worldline in hand, we can also visualize the stress-energy expansions,

$$\begin{aligned} T^{(1)}_{ab}(\gamma_0) &= \frac{m \ u_a^0 u_b^0}{u_0^t \sqrt{-g^0}} \delta^{(3)} [X^i - \gamma_0^i(T)], \\ T^{(2)}_{ab}(\gamma_0, \gamma_1) &= m \ \delta t_{ab} \ \delta^{(3)} [X^i - \gamma_0^i(T)] \\ &- \frac{m \ u_a^0 u_b^0}{u_0^t \sqrt{-g^0}} \gamma_{1\mathsf{R}}^j \frac{\partial}{\partial X^j} \delta^{(3)} [X^i - \gamma_0^i(T)] \end{aligned}$$

Capra 19

Complications and Workarounds

- One term in the second-order expansion, $G_{ab}^{(2)}(g^0, h^1)$, is ill-defined (even distributionally) on the worldline of the particle.
- Unlike the first-order problem, we have no clear way of solving for $h^{2,\text{ret}}$ directly.
- Instead, we start directly with the adoption of a regular/singular split,

 $h^2 = h^{2\mathsf{S}} + h^{2\mathsf{S}\dagger} + h^{2\mathsf{R}},$

with $h^{2S\dagger}$ arising from the adjustments to h^{1S} from the addition of h^{1R} to the background.

• Schematically, you might think that $h^{2S\dagger}$ belongs with h^{1S} , but it is second-order in the mass:

$$h^{1\mathsf{S}} + h^{2\mathsf{S}\dagger} = rac{m}{r} \left[1 + rac{x^2}{\mathcal{R}^2} \left(1 + rac{m}{\mathcal{R}} \right) + \cdots
ight]$$

Introduce a Working Regular/Singular Split

 We understand that the singular field is known only as an asymptotic expansion of the true singular field h^S. In terms of locally inertial and Cartesian coordinates, xⁱ, one might expect,

 $h^{1S} = h^{1s} + O(mx^4/r\mathcal{R}^4)$ $h^{2S} + h^{2S\dagger} = h^{2s} + h^{2S\dagger} + O(m^2x^4/r^2\mathcal{R}^4)$

- At first order, h^{1s} is known accurately enough to allow $h^{1r} \equiv h^{1,\text{ret}} h^{1s}$ to be C^2 on γ_0 .
- For second-order calculations, we sidestep the definition of $h^{2,\text{ret}}$ and solve directly for h^{2r} :

$$\begin{aligned} G^{(1)}_{ab}(g^{0},h^{2r}) &= -G^{(2)}_{ab}(g^{0},h^{1r}) - [G^{(2)}_{ab}(g^{0},h^{1r}) + G^{(1)}_{ab}(g^{0},h^{2s})] \\ &+ [8\pi T_{ab}(\gamma_{0}+\gamma_{1r}) - G^{(1)}_{ab}(g^{0}+h^{1r},h^{1s})] \\ &- [8\pi T_{ab}(\gamma_{0}) - G^{(1)}_{ab}(g^{0},h^{1s})] \end{aligned}$$

Calculating h^{1s} and h^{2s}

Steve began considering local expansions of h^{1S} by looking at asymptotic expansions of a small Schwarzschild black hole. For an isolated Schwarzschild black hole of mass m, the local geometry may be written as,

$$g_{ab}^{
m schw} = \eta_{ab} + {}_0h_{ab}^{
m schw}$$

with

$${}_0h_{ab}^{\rm schw}dx^adx^b=\frac{2m}{r}dt^2+\frac{2m}{r-2m}n_kn_ldx^kdx^l,$$

given $n_i \equiv \nabla_i r$. Expanding as $m/r \ll 1$ but remaining finite,

$${}_{0}h_{ab}^{\mathrm{schw}}dx^{a}dx^{b} = \underbrace{\frac{2m}{r}dt^{2} + \frac{2m}{r}n_{k}n_{l}dx^{k}dx^{l}}_{{}_{0}h_{ab}^{\mathrm{ischw}}dx^{a}dx^{b}} + \sum_{j=2}\underbrace{\left(\frac{2m}{r}\right)^{j}n_{k}n_{l}dx^{k}dx^{l}}_{{}_{0}h_{ab}^{\mathrm{ischw}}dx^{a}dx^{b}},$$

Capra 19

Calculating h^{1s} and h^{2s}

- At quadrupolar and higher orders, one considers perturbations to the Schwarzschild geometry, sourced by some external curvature (in this case, the large black hole *M*). These perturbations are matched in the buffer region to an expansion of the background geometry about the geodesic $\gamma_0 + \gamma_{\rm IR}$.²
- After matching, the singular pieces may be identified by taking the $m/r \ll 1$ limit:

$${}_{2}h_{ab}^{1s} dx^{a} dx^{b} = \frac{2m}{r} [(1 + r^{2} \mathcal{E}^{(2)}) dt^{2} + (1 - 3r^{2} \mathcal{E}^{(2)}) (dr^{2} + \sigma_{AB} dx^{A} dx^{B})] - 4mr \mathcal{E}_{A}^{(2)} dr dx^{A} - 2mr \mathcal{E}_{AB}^{(2)} dx^{A} dx^{B} + 2\frac{m}{3r} \mathcal{B}_{A}^{(2)} dt dx^{A}$$

²K. S. Thorne and J. B. Hartle, Phys. Rev. D **31**, 1815 (1985). Capra 19 12

Calculating h^{1s} and h^{2s}

In particular, some of Steve's last work was in computing the A-K pieces of the local singular fields, for use in the Einstein field equation expansions:

$$2G^{(1)}(g^{0}, h)|_{A} = \frac{2(r-2M)^{2}}{r^{2}} \left(\frac{\partial^{2}}{\partial r^{2}}\mathsf{E}\right) + \frac{2(r-2M)(3r-5M)}{r^{3}} \left(\frac{\partial}{\partial r}\mathsf{E}\right) - \frac{(r-2M)(\ell+2)(\ell-1)}{r^{3}}\mathsf{E}$$
$$- \frac{\ell(\ell+2)(\ell+1)(\ell-1)(r-2M)}{2r^{3}}\mathsf{F} + \frac{2\ell(\ell+1)(r-2M)^{2}}{r^{3}} \left(\frac{\partial}{\partial r}\mathsf{H}\right) + \frac{2\ell(\ell+1)(r-2M)(2r-3M)}{r^{4}}\mathsf{H}$$
$$- \frac{2(r-2M)^{3}}{r^{4}} \left(\frac{\partial}{\partial r}\mathsf{K}\right) - \frac{(2r+4M+r\ell+r\ell^{2})(r-2M)^{2}}{r^{5}}\mathsf{K}$$

• Steve was very passionate about the second-order self-force problem!

• His formalism gives us a different view of some of the challenges faced at second-order.