Progress Toward Post-Adiabatic EMRI Waveforms

J. $Moxon^1$ E. Flanagan¹ A. Pound² T. Hinderer³

¹Cornell University Department of Physics ²University of Southampton Mathematical Sciences ³University of Maryland, College Park Maryland Center for Fundamental Physics

Capra 2016

Status of EMRI Computations

- Self-force computations (worldline evolution)
 - A great deal of activity, many useful regularization schemes
 - Community is close to first order self-force for generic orbits
- Computation of waveforms
 - Adiabatic order: Analytic formalism in place, numerical implementation [Burko, Lackeos 2012]
 - Post-adiabatic order: Analytic formalism and foundations in progress [This talk] - extends [Flanagan, Hinderer 2008; Pound 2015]

	Adiabatic	Post-adiabatic
Required Order of Self-Force	First Order Dissipative	Second Order Dissipative + First Order Conservative
Errors in Amplitude of Waveform	$\mathcal{O}(\epsilon)$	$\mathcal{O}(\epsilon^2)$
Errors in Phase of Waveform	$\mathcal{O}(1)$	$\mathcal{O}(\epsilon)$

Foundation: Two-Timescale for the Interaction Region

▶ Two timescale approximation promotes time dependence to multiple (temporarily) independent variables $t \rightarrow {\tilde{t}, q^A}$

$$\tilde{t} = \frac{\mu}{M} t \equiv \epsilon t \qquad \qquad \frac{dq^A}{dt} = \Omega(\tilde{t},\epsilon)$$

- \blacktriangleright Conserved quantities J^M closely related to momentum components direct in the case of $E,\ L_z$
- \blacktriangleright Action angle variables q^A coordinates on compact directions of the symplectic manifold
- Periodic behavior depends on q^A , secular depends on \tilde{t}
- ▶ Worldline can be expressed using action angle variables :

$$\begin{aligned} \frac{dJ^M}{dt} = &\epsilon G^{(1)M}(J^{(0)M}(\tilde{t}), q^A) + \mathcal{O}(\epsilon^2) \\ \frac{dq^A}{dt} = &\Omega^A(J^{(0)M}(\tilde{t})) + \epsilon g^{(1)A}(J^{(0)M}(\tilde{t}), q^A) \end{aligned}$$

• Metric ansatz $(g^{(0)}_{\alpha\beta}$ taken to be Schwarzschild)

 $g_{\alpha\beta} = g^{(0)}_{\alpha\beta}(\bar{x}^i) + \epsilon h^{(1)}_{\alpha\beta}(\tilde{t}, q^A, \bar{x}^i) + \epsilon^2 h^{(1)}_{\alpha\beta}(\tilde{t}, q^A, \bar{x}^i) + \mathcal{O}(\epsilon^3)$

Worldline ansatz:

$$z^{\mu}(t) = z^{(0)}(\tilde{t}, q^{A}) + \epsilon z^{(1)}(\tilde{t}, q^{A}) + \mathcal{O}(\epsilon^{2})$$

- Precision of approximation preserved dephasing time is ~the entire inspiral, rather than the standard result for black hole perturbation theory : geometric mean of timescales
- Our method applies the two timescale approximation to metric perturbations to preserve field precision for full inspiral

Moving Beyond Adiabatic Precision

- Near-Horizon : Black hole perturbation theory [Pound, Yamada, Isoyama, Tanaka - in progress]
- Interaction zone : Two timescale expansion, worldline two-time
 - Post-adiabatic evolution requires matching to adjacent regions
- Near small object : Puncture [Pound, 2014]
- Far zone : Post-Minkowski approximation [Extending Pound 2015]

Adiabatic Order : Metric and Worldline

Adiabatic Order : Computational Steps

 $\nabla^{\alpha} \nabla_{\alpha} h^{(1)}_{\mu\nu} + 2R_{\mu}{}^{\alpha}{}_{\nu}{}^{\beta} h^{(1)}_{\alpha\beta} = -16\pi \bar{T}_{\mu\nu}(x;z)$ [Self force equations of motion]

time derivatives replaced as:

$$\partial_t \to \epsilon \partial_{\tilde{t}} + \Omega^A(\tilde{t},\epsilon) \partial_{q^A}$$

Form of Adiabatic order metric perturbation:

$$\begin{split} h^{(1)}_{\alpha\beta} = & \frac{\partial g_{\alpha\beta}}{\partial M} \delta M(\tilde{t}) + \frac{\partial g_{\alpha\beta}}{\partial a} \delta a(\tilde{t}) \\ &+ \bar{F}_{\alpha\beta}(\tilde{t}, \bar{x}^i) + \tilde{F}_{\alpha\beta}(\tilde{t}, \bar{x}^i, q^A) \end{split}$$

Worldline Solutions [Hinderer, Flanagan]

Solutions for the worldline at adiabatic order:

$$\left\langle \frac{dJ_M^{(0)}}{d\tilde{t}} \right\rangle = \left\langle G_M^{(1)} \left[J_M^{(0)}(\tilde{t}) \right] \right\rangle$$
$$\frac{dq^{(0)A}}{dt} = \Omega^A (J^M(\tilde{t}))$$

- Forcing functions are derived from the gravitational self-force (MiSaTaQuWa at this order)
- \blacktriangleright The leading order wordline $z^{(0)\mu}$ requires only time averaged self-force $\langle G^{(1)M}\rangle$
- \blacktriangleright Angle variable equation defines the relation between fast time variables q^A and physical time
 - Allows projection to a physical time dependence from fast time harmonic expansion

$$f(t) = \sum_{k_A} a_{k_A}(\tilde{t}) e^{iq_A k^A}$$

- Leading order worldline biperiodic geodesic at fixed \tilde{t} : $z^{(0)}[E^{(0)}(\tilde{t}), L_z^{(0)}(\tilde{t}), q^A]$
- Similar at this order to osculating geodesics [Pound, Poisson 2007]
- Procedure outline:
 - Evaluate $\Psi_{RW/Z}(\tilde{t})$ harmonics
 - Use fluxes to determine first-order averaged self-force and worldline

$$\left\langle \frac{d\mathcal{E}}{d\tau} \right\rangle = \left\langle \left[\mathsf{Fluxes} \right] \right\rangle$$

• Use frequencies $\Omega^{(0)A}(\tilde{t})$ to project $\{\tilde{t}, q^A\}$ to physical time

- (Second order) dissipative part our goal is to use fluxes $\delta \Psi_{RW/Z}$ [In development]
 - quadratic source at second order
 - \blacktriangleright Need to fully understand fluxes \leftrightarrow orbit evolution at second order
- (First order) conservative self-force frequency shifts and orbit wobble
 - $L^{(1)}_{z}(q^{A},\tilde{t})$, $E^{(1)}(q^{A},\tilde{t})$
 - $dq^A/dt = \Omega^A(L_z, E) + \epsilon g^A(\tilde{t}, q^A)$
 - Requires full metric solution to first order, not just time-averaged adiabatic fluxes
- Drift of central black hole $\delta M(ilde{t})$ and $\delta a(ilde{t})$

Metric perturbations expressed as a sum of a known puncture and a residual field

$$h_{\alpha\beta}^{(1)} - h_{\alpha\beta}^{(1)\mathcal{P}} = h_{\alpha\beta}^{(1)\mathcal{R}}$$

- Time-averaged orbit parameters can be derived using second order self force [Pound;Gralla] in the two-timescale orbit expressions
- Expression for time-averaged energy E, angular momentum L_z evolution:

$$\left\langle \frac{d\mathcal{E}}{d\tau} \right\rangle = \frac{1}{4} \langle u^{\gamma} u^{\delta} \partial_{\xi} h_{\gamma\delta}^{(2)\mathcal{R}} \rangle + \frac{1}{8} \left\langle u^{\alpha} u^{\beta} u^{\gamma} u^{\delta} \partial_{\xi} (h_{\alpha\beta}^{(1)\mathcal{R}} h_{\gamma\delta}^{(1)\mathcal{R}}) \right\rangle$$

Suspected to be gauge-invariant for gauges that preserve the two-timescale ansatz- need to confirm

- ▶ First order conservative SF gives fast-time wobble in orbit parameters
- Near-Identity transformation [Vines, Flanagan] moves this dependence to the worldline function

$$\begin{split} J'^M = &J^M + \epsilon T^M(J^M, q^A, \tilde{t}) \\ Q^A = &q^A + \epsilon L^A(J^M, q^A, \tilde{t}) \end{split}$$

A carefully chosen set of parameters can bring the orbit equations of motion to

$$\begin{split} \frac{dQ_A}{dt} = &\Omega_A(J'^M(\tilde{t})) + \epsilon \langle g_A^{(1)}[J'^M(\tilde{t})] \rangle + \mathcal{O}(\epsilon) \\ \frac{J'^M}{dt} = &\epsilon \langle G^{(1)M}[J'^M(\tilde{t})] \rangle \end{split}$$

Puncture Corrections

- From an explicit formulation of the worldline $z^{(0)\mu} + \epsilon z^{(1)\mu} + O(\epsilon^2)$, require a near-particle metric
- This puncture metric enters into the near-particle relaxed EFE at second order:

$$E_{\mu\nu}[h_{\alpha\beta}^{(2)\mathcal{R}}] = -E_{\mu\nu}[h_{\alpha\beta}^{(2)\mathcal{P}}] + S_{\mu\nu}[h_{\alpha\beta}^{(1)}, h_{\alpha\beta}^{(1)}] + \delta T_{\mu\nu}$$

- Previous covariant puncture results [Pound] through second order for an exact wordline
- ▶ These results need to be adjusted slightly for the correction from a $\mathcal{O}(\mu)$ displacement in worldline position
 - Dipole-type corrections to the puncture, even for a spherically symmetric object
 - Details yet to be worked out in full generality Adam has done this for quasicircular orbits, generalizable procedure given in [Pound 2015]

Post-Adiabatic : Far and Very Far Zone

Post-Adiabatic : Far and Very Far Zone

- Incoming homogeneous modes from quadratic source outside interaction zone $r > M/\epsilon$ [scalar analogue Pound 2015]
 - \blacktriangleright Outgoing modes give $\mathcal{O}(\epsilon^2)$ quadratic source
 - Post-Minkowski expansion in far zone
 - Post-Minkowski techniques developed by [Blanchet and Damour; Will et al]
 - Primarily m = 0, few components of tensor harmonics for most geodesics
- History-dependent outgoing radiation gets secular enhancement at $r\gg 1/\epsilon$
 - $\blacktriangleright \ \mathcal{O}(\epsilon^2)$ flux from far zone build to $\mathcal{O}(\epsilon)$ in very far

Matching with the Far Zone

- \blacktriangleright Two-time formalism does not keep the desired precision at $r \gg M$ at second order, even for hyperboloidal slices
- Information from the far zone required to completely determine the subleading worldline
- Lorenz gauge, so we seek solutions to

$$\Box h_{\mu\nu}^{(1)\text{Far}} = 0$$
$$\Box h_{\mu\nu}^{(2)\text{Far}} = S_{\mu\nu}$$

- $h_{\mu\nu}^{(1)\text{Far}}$ obtained from interaction zone information
- Both quasicircular and elliptical orbits' $S_{\mu\nu}$:
 - Only static component is required ensures a direct sum of modes in no-resonance assumption
 - Source depends only on traceless angular metric components $(\propto Y_{AB}; \propto X_{AB})$

Static far zone source, generalized to elliptical orbits (quasicircular retrieved by discarding $n \neq 0$ radial harmonics)

$$\begin{split} s_{tt}^{\bar{l}0} = & s_{rr}^{\bar{l}0} = -s_{tr}^{\bar{l}0} \\ = & \sum_{l,l'>2} \sum_{m\neq 0} \sum_{n>0} (n\Omega_r + m\Omega_\phi)^2 \\ & * \left(C_{lm-2\,l'-m,2}^{l00} + C_{lm2\,l'-m,-2}^{l00} \right) \\ & * \left(h_{l'm}^{(7)} h_{lm}^{(7)} + h_{l'm}^{(10)} h_{lm}^{(10)} \right) \end{split}$$

- ▶ (7),(10) are [Barack,Sago] traceless angular components
 - Correspond to linear combinations of coefficients of Y_{AB} , X_{AB} in [Martel, Poisson] decomposition

Far Zone Inhomogeneous Solution

- \blacktriangleright Results of applying [Blanchet, Damour] to find finite part of $\Box_{\rm ret}^{-1}(r^{-2}s_{sL}^{\bar{l}\bar{n}}\hat{n}^L)$
- ► Combining results for radial and angular periodicities (in an STF decomposition; no-resonance assumption ⇒ m
 = 0):

$$j_{sL}^{\bar{l}\bar{n}} = \begin{cases} s_{sL}^{00}(\bar{w}) \left(\ln(\frac{2r}{\epsilon}) - 1 \right) - \int_0^\infty d\bar{z} \dot{s}_{sL}^{00}(\bar{w} - \bar{z}) \ln \bar{z} & \bar{n} = 0; \ \bar{l} = 0 \\ -\frac{\dot{s}_{sL}^{\bar{l}_0}}{l(l+1)} & \bar{n} = 0; \ \bar{l} > 0 \\ \frac{-is_{sL}^{\bar{l}_n} \ln(r)}{2r\bar{n}\Omega_r} & \bar{n} > 0 \end{cases}$$

- \blacktriangleright Written in terms of a scaled retarded time variable \bar{w},\bar{z}
- ► These expressions, combined with the sources above represent the full set of information required from the Far zone to compute the perturbations to the near-zone worldline

- Two-timescale together with matched expansions provide a framework for handling the subtle secular evolution of inspirals
- Adiabatic order largely a reformulation of existing derivations
- ▶ Post-adiabatic is a work in progress, but promises important improvements - O(ϵ) phase error throughout inspiral
 - Some technical details of Schwarzschild remain to be worked out
- Hoped-for future steps:
 - Kerr! (eventually...)
 - resonances

