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Status of EMRI Computations

I Self-force computations (worldline evolution)
I A great deal of activity, many useful regularization schemes

I Community is close to first order self-force for generic orbits

I Computation of waveforms
I Adiabatic order: Analytic formalism in place, numerical

implementation [Burko, Lackeos 2012]

I Post-adiabatic order: Analytic formalism and foundations in progress
[This talk] - extends [Flanagan, Hinderer 2008; Pound 2015]

Adiabatic Post-adiabatic

Required Order
of Self-Force

First Order Dissipative
Second Order Dissipative

+ First Order Conservative

Errors in Amplitude
of Waveform

O(ε) O(ε2)

Errors in Phase
of Waveform

O(1) O(ε)
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Foundation:Two-Timescale for the Interaction Region

I Two timescale approximation promotes time dependence to multiple
(temporarily) independent variables t→ {t̃, qA}

t̃ =
µ

M
t ≡ εt dqA

dt
= Ω(t̃, ε)

I Conserved quantities JM closely related to momentum components
- direct in the case of E, Lz

I Action angle variables qA coordinates on compact directions of the
symplectic manifold

I Periodic behavior depends on qA, secular depends on t̃

I Worldline can be expressed using action angle variables :

dJM

dt
=εG(1)M (J (0)M (t̃), qA) +O(ε2)

dqA

dt
=ΩA(J (0)M (t̃)) + εg(1)A(J (0)M (t̃), qA)
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Improved Long-Time Fidelity

I Metric ansatz (g
(0)
αβ taken to be Schwarzschild)

gαβ = g
(0)
αβ (x̄i)+εh

(1)
αβ(t̃, qA, x̄i)+ε2h

(1)
αβ(t̃, qA, x̄i)+O(ε3)

I Worldline ansatz:

zµ(t) = z(0)(t̃, qA) + εz(1)(t̃, qA) +O(ε2)

I Precision of approximation preserved - dephasing time is
∼the entire inspiral, rather than the standard result for
black hole perturbation theory : geometric mean of
timescales

I Our method applies the two timescale approximation to
metric perturbations to preserve field precision for full
inspiral
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Moving Beyond Adiabatic Precision

Near-Horizon

Puncture

Two-timescale

Far Zone

(matching)

1

Far zone

I Near-Horizon : Black hole
perturbation theory [Pound, Yamada,
Isoyama, Tanaka - in progress]

I Interaction zone : Two timescale
expansion, worldline two-time

I Post-adiabatic evolution requires
matching to adjacent regions

I Near small object : Puncture [Pound,
2014]

I Far zone : Post-Minkowski
approximation [Extending Pound
2015]
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Suggested Algorithm for Post-Adiabatic Computation

Worldline
Orbit 

Parameters
Interaction

Metric
Matching

Metric Waves

Adiabatic
Waveform

Post-Adiabatic
Waveform

Computation 
Understood

Computation
Unfinished

Numerics
Required

[Pound,Isoyama,
Yamada,Tanaka]

(In progress)
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Adiabatic Order : Metric and Worldline

Worldline
Orbit 
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Adiabatic Order : Computational Steps

I Coupled self-consistent equations, promoted to
two-timescale

∇α∇αh(1)
µν + 2Rµ

α
ν
βh

(1)
αβ = −16πT̄µν(x; z)

[Self force equations of motion]

I time derivatives replaced as:

∂t → ε∂t̃ + ΩA(t̃, ε)∂qA

I Form of Adiabatic order metric perturbation:

h
(1)
αβ =

∂gαβ
∂M

δM(t̃) +
∂gαβ
∂a

δa(t̃)

+ F̄αβ(t̃, x̄i) + F̃αβ(t̃, x̄i, qA)

Post-adiabatic two-timescale Cornell University



Worldline Solutions [Hinderer,Flanagan]

I Solutions for the worldline at adiabatic order:〈
dJ

(0)
M

dt̃

〉
=
〈
G

(1)
M

[
J

(0)
M (t̃)

]〉
dq(0)A

dt
=ΩA(JM (t̃))

I Forcing functions are derived from the gravitational self-force
(MiSaTaQuWa at this order)

I The leading order wordline z(0)µ requires only time averaged
self-force 〈G(1)M 〉

I Angle variable equation defines the relation between fast time
variables qA and physical time

I Allows projection to a physical time dependence from fast time
harmonic expansion

f(t) =
∑
kA

akA(t̃)eiqAk
A
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Adiabatic Order Computation

I Leading order worldline - biperiodic
geodesic at fixed t̃:

z(0)[E(0)(t̃), L
(0)
z (t̃), qA]

I Similar at this order to osculating
geodesics [Pound, Poisson 2007]

I Procedure outline:
I Evaluate ΨRW/Z(t̃) harmonics

I Use fluxes to determine first-order
averaged self-force and worldline〈

dE
dτ

〉
= 〈[Fluxes]〉

I Use frequencies Ω(0)A(t̃) to project
{t̃, qA} to physical time
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Post-Adiabatic : Interaction Zone

Near-Horizon

Puncture

Two-timescale

(matching)

-1

I (Second order) dissipative part - our goal
is to use fluxes δΨRW/Z [In development]

I quadratic source at second order

I Need to fully understand fluxes ↔ orbit
evolution at second order

I (First order) conservative self-force -
frequency shifts and orbit wobble

I L
(1)
z (qA, t̃), E(1)(qA, t̃)

I dqA/dt = ΩA(Lz, E) + εgA(t̃, qA)

I Requires full metric solution to first
order, not just time-averaged adiabatic
fluxes

I Drift of central black hole δM(t̃) and δa(t̃)
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Fluxes at Second Order

I Metric perturbations expressed as a sum of a known puncture and a
residual field

h
(1)
αβ − h

(1)P
αβ = h

(1)R
αβ

I Time-averaged orbit parameters can be derived using second order
self force [Pound;Gralla] in the two-timescale orbit expressions

I Expression for time-averaged energy E, angular momentum Lz
evolution:〈

dE
dτ

〉
=

1

4
〈uγuδ∂ξh(2)R

γδ 〉+
1

8

〈
uαuβuγuδ∂ξ(h

(1)R
αβ h

(1)R
γδ )

〉
I Suspected to be gauge-invariant for gauges that preserve the

two-timescale ansatz- need to confirm
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Near-Identity Transformation

I First order conservative SF gives fast-time wobble in orbit parameters

I Near-Identity transformation [Vines,Flanagan] moves this
dependence to the worldline function

J ′M =JM + εTM (JM , qA, t̃)

QA =qA + εLA(JM , qA, t̃)

I A carefully chosen set of parameters can bring the orbit equations of
motion to

dQA
dt

=ΩA(J ′M (t̃)) + ε〈g(1)
A [J ′M (t̃)]〉+O(ε)

J ′M

dt
=ε〈G(1)M [J ′M (t̃)]〉
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Puncture Corrections

I From an explicit formulation of the worldline z(0)µ + εz(1)µ +O(ε2),
require a near-particle metric

I This puncture metric enters into the near-particle relaxed EFE at
second order:

Eµν [h
(2)R
αβ ] = −Eµν [h

(2)P
αβ ] + Sµν [h

(1)
αβ , h

(1)
αβ ] + δTµν

I Previous covariant puncture results [Pound] through second order for
an exact wordline

I These results need to be adjusted slightly for the correction from a
O(µ) displacement in worldline position

I Dipole-type corrections to the puncture, even for a spherically
symmetric object

I Details yet to be worked out in full generality - Adam has done this
for quasicircular orbits, generalizable procedure given in [Pound 2015]
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Post-Adiabatic : Far and Very Far Zone
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Post-Adiabatic : Far and Very Far Zone

Very far zone

Far Zone
I Incoming homogeneous modes from quadratic

source outside interaction zone r > M/ε
[scalar analogue - Pound 2015]

I Outgoing modes give O(ε2) quadratic source

I Post-Minkowski expansion in far zone

I Post-Minkowski techniques developed by
[Blanchet and Damour; Will et al]

I Primarily m = 0, few components of tensor
harmonics for most geodesics

I History-dependent outgoing radiation gets
secular enhancement at r � 1/ε

I O(ε2) flux from far zone build to O(ε) in
very far
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Matching with the Far Zone

I Two-time formalism does not keep the desired precision at r �M
at second order, even for hyperboloidal slices

I Information from the far zone required to completely determine the
subleading worldline

I Lorenz gauge, so we seek solutions to

�h(1)Far
µν =0

�h(2)Far
µν =Sµν

I h
(1)Far
µν obtained from interaction zone information

I Both quasicircular and elliptical orbits’ Sµν :
I Only static component is required - ensures a direct sum of modes in

no-resonance assumption

I Source depends only on traceless angular metric components
(∝ YAB ;∝ XAB)
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Far Zone Source

I Static far zone source, generalized to elliptical orbits (quasicircular
retrieved by discarding n 6= 0 radial harmonics)

sl̄0tt =sl̄0rr = −sl̄0tr
=
∑
l,l′>2

∑
m 6=0

∑
n>0

(nΩr +mΩφ)2

∗
(
Cl00
lm−2 l′−m,2 + Cl00

lm2 l′−m,−2

)
∗ (h

(7)
l′mh

(7)
lm + h

(10)
l′m h

(10)
lm )

I (7),(10) are [Barack,Sago] traceless angular components
I Correspond to linear combinations of coefficients of YAB , XAB in

[Martel,Poisson] decomposition
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Far Zone Inhomogeneous Solution

I Results of applying [Blanchet, Damour] to find finite part of
�−1

ret (r−2sl̄n̄sLn̂
L)

I Combining results for radial and angular periodicities (in an STF
decomposition; no-resonance assumption ⇒ m̄ = 0):

j l̄n̄sL =


s00
sL(w̄)

(
ln( 2r

ε )− 1
)
−
∫∞

0
dz̄ ˙̄s00

sL(w̄ − z̄) ln z̄ n̄ = 0; l̄ = 0

− ŝl̄0sL
l̄(l̄+1)

n̄ = 0; l̄ > 0

−isl̄n̄sL ln(r)
2rn̄Ωr

n̄ > 0

I Written in terms of a scaled retarded time variable w̄, z̄

I These expressions, combined with the sources above represent the
full set of information required from the Far zone to compute the
perturbations to the near-zone worldline
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Summary and Conclusions

I Two-timescale together with matched expansions
provide a framework for handling the subtle
secular evolution of inspirals

I Adiabatic order largely a reformulation of existing
derivations

I Post-adiabatic is a work in progress, but promises
important improvements - O(ε) phase error
throughout inspiral

I Some technical details of Schwarzschild remain
to be worked out

I Hoped-for future steps:
I Kerr! (eventually...)

I resonances
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