Gravitational waves from neutron star - black hole binaries

Tanja Hinderer

(University of Maryland)

- A. Taracchini A. Buonanno
- J. Steinhoff
- nanno haff
- F. Foucart M. Duez
- L. E. Kidder

H. P. Pfeiffer

M.A. Scheel

C.W. Carpenter

B. Szilagyi

K. Kyutoku M. Shibata

K. Hotokezaka

Overview

Motivation

- Challenges for modeling neutron star-black hole binaries
 - mass ratios: 2 (?) very large
 - spins: BH any, NS small
 - NS matter effects
- Tidal effects during inspiral
- Tidal disruption
- Conclusions

Why care about neutron stars (NSs)?

GW signal from NS-BH binaries

[[]data from F. Foucart]

Adiabatic tidal effects

- dominant effect: adiabatic tides (AT)
- induced deformation (fundamental ℓ -modes):

$$Q_{\ell m}^{
m AT} = -\lambda_\ell \, \mathcal{E}_{\ell m} e^{-im\phi}$$
BH's tidal field

Adiabatic tides in the EOB Hamiltonian

$$\mathrm{d}s_{\mathrm{eff}}^2 = -A\mathrm{d}t^2 + B\mathrm{d}r^2 + r^2d\phi^2$$

$$A = A^{\mathrm{pp}}(M,\nu,r) - \frac{\lambda_\ell}{M}A^{\mathrm{AT}}(M,\nu,r)$$

• different possibilities for A^{AT}:

[Damour, Nagar, Bini, Faye, Bernuzzi+2009-2014]

• 2PN, Taylor expanded:
$$A_{\text{PN}}^{\text{AT}} = \frac{3q}{r^6} \left[1 + \frac{p_1(\nu)}{r} + \frac{p_2(\nu)}{r^2} + O\left(\frac{1}{r^3}\right) \right]$$

• self-force:
$$A_{\mathrm{GSF}}^{\mathrm{AT}}(M,\nu,r) = rac{3q}{r^6} \left[1 + rac{3}{r^2 \left(1 - rac{r_{\mathrm{LR}}}{r}\right)} + rac{g_1(r)}{q \left(1 - rac{r_{\mathrm{LR}}}{r}\right)^{7/2}} + O\left(rac{1}{q^2}
ight)
ight]$$
 r_{LR}=light ring

• tuned GSF:
$$A_{tGSF}^{AT}(M, \nu, r) = \frac{3q}{r^6} \left[1 + \frac{3}{r^2 \left(1 - \frac{r_{LR}}{r}\right)} + \frac{g_1(r)}{q \left(1 - \frac{r_{LR}}{r}\right)^{7/2}} + \frac{p_2''(\nu)/2}{q^2 \left(1 - \frac{r_{LR}}{r}\right)^p} \right]$$

adjustable:
 $4 \le p \le 6$

Dynamic tides

• extended body description: forced harmonic oscillators

Jan Steinhoff's talk after the coffee break

NS's tidal response during the inspiral

EOB Hamiltonian with dynamic tides

• full evolution: $H_{\text{EOB}}(r, p_r, p_{\phi}, Q_{\ell m}, P_{\ell m}; M, \nu, \lambda_{\ell}, \omega_f)$

Jan Steinhoff's talk

• effective description from a two-timescale composite expansion for Q_{Im}:

Performance of the tidal EOB model

similar results for NS-NS binaries

When to expect tidal disruption

Features in the GWs

NR data from Francois Foucart, Matt Duez, SXS collaboration

Features in GWs from tidal disruption

GW emission from dust cloud

number density

• Haugan, Shapiro & Wasserman 1981; Saijo & Nakamura 2000:

frequency domain Teukolsky equation sourced by:

$$T_{\text{blob}}^{\mu\nu} = \sum_{i} T_{\text{one}}^{\mu\nu}(x, x_{i}) \approx \int d^{3}x' T_{\text{one}}^{\mu\nu}(x, x') n(x', T_{0}) \qquad \text{of particles}$$

• result:

$$\left(\frac{dE}{d\omega}\right)_{\ell m\omega}^{\text{(blob)}} = f_{\ell m\omega}^{2} \left(\frac{dE}{d\omega}\right)_{\ell m\omega}^{\text{(one)}} \int_{\mathbb{R}} \int_{\mathbb{R$$

Towards a toy model for NSBH

- Cloud of test masses in Kerr
- time-domain Teukolsky eqn.

[Gaurav Khanna]

[courtesy Andrea Taracchini]

Towards a toy model

• Qualitatively similar features to NSBH:

amplitude shut-off, frequency peak, time delay

Towards a toy model

Conclusions

- NS-BH systems are an interesting, rich source of GWs
- Main imprint of NS microphysics in the GWs from inspirals: tidal effects
- Dynamic f-mode tides can be significant, now included in EOB
- Also included: plunge/tidal disruption signal (nonspinning case)

- Further improve models and measurement potential, reduce systematics
- Include more realistic physics (BH spin in progress)
- Improve physical insights to develop more robust models
- Accurate NR simulations are crucial to inform model developments
- optimize data analysis strategies (e.g. parameterization)

Thank you