Radiation reaction effect on orbital parameters of a spinning particle in Kerr spacetime

Ryuichi Fujita（藤田 龍一）
Instituto Superior Técnico，Portugal

19th Capra Meeting，Observatoire de Paris，June 27－July 12016

TÉCNICO
LISBOA

centra

grit gravitation in técnico

A spinning particle in Kerr spacetime

- Zeroth order in the mass ratio
- Geodesic orbits with $\left(E, L_{z}, C\right)$
- First order in the mass ratio

Deviation from the geodesic orbits because of

- Radiation reaction
- Spin of the particle, ...

Equations of motion of the spinning particle

- At the linear order in the spin:

$$
\begin{aligned}
\frac{D}{d \tau} p^{\mu}(\tau) & =-\frac{1}{2} R_{\nu \rho \sigma}^{\mu}(z(\tau)) v^{\nu}(\tau) S^{\rho \sigma}(\tau) \\
\frac{D}{d \tau} S^{\mu \nu}(\tau) & =2 p^{[\mu}(\tau) v^{\nu]}(\tau)(=0)
\end{aligned}
$$

where $v^{\mu}(\tau)=d z^{\mu}(\tau) / d \tau, p^{\mu}(\tau)$ and $S^{\mu \nu}(\tau)$ are the linear and spin angular momenta of the particle.

* Hamiltonian can be found in Barausse+(2009), Vines+(2016).
* Motion couples to the evolution of the spin
* Frequencies of the motion and the spin precession?
* Osculating geodesics? [Ruangsri+(2015)]

Conserved quantities

$$
\begin{aligned}
\frac{E}{\mu} & =u^{\mu} \xi_{\mu}-\frac{1}{2 \mu} S^{\mu \nu} \xi_{\mu ; \nu} ; \quad \frac{J_{z}}{\mu}=u^{\mu} \chi_{\mu}-\frac{1}{2 \mu} S^{\mu \nu} \chi_{\mu ; \nu} \\
\frac{Q}{\mu^{2}} & =\frac{1}{2} f_{\mu \sigma} f_{\nu}{ }^{\sigma} u^{\mu} u^{\nu}-u^{\mu} \frac{S^{\rho \sigma}}{\mu}\left(f_{\sigma}^{\nu} f_{\mu \rho \nu}-f_{\mu}{ }^{\nu} f_{\rho \sigma \nu}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\xi_{\mu} & =\sqrt{\frac{\Delta}{\Sigma}} e_{\mu}^{0}+\frac{a \sin \theta}{\sqrt{\Sigma}} e_{\mu}^{3} ; \quad \chi_{\mu}=\operatorname{ain}^{2} \theta \sqrt{\frac{\Delta}{\Sigma}} e_{\mu}^{0}+\frac{\left(r^{2}+a^{2}\right) \sin \theta}{\sqrt{\Sigma}} e_{\mu}^{3}, \\
f_{\mu \nu} & =2 a \cos \theta e_{[\mu}^{1} e_{\nu]}^{0}+2 r e_{[\mu}^{2} e^{3}{ }_{\nu]} ; \quad f_{\mu \nu \sigma}=f_{\mu \nu ; \sigma},
\end{aligned}
$$

and $e^{a}{ }_{\mu}$ is the tetrad frame deined by

$$
\begin{aligned}
e_{\mu}^{0} & =\left(\sqrt{\frac{\Delta}{\Sigma}}, 0,0,-a \sin ^{2} \theta \sqrt{\frac{\Delta}{\Sigma}}\right), e_{\mu}^{1}=\left(0, \sqrt{\frac{\Sigma}{\Delta}}, 0,0\right) \\
e_{\mu}^{2} & =(0,0, \sqrt{\Sigma}, 0), e_{\mu}^{3}=\left(-\frac{a}{\sqrt{\Sigma}} \sin \theta, 0,0, \frac{r^{2}+a^{2}}{\sqrt{\Sigma}} \sin \theta\right)
\end{aligned}
$$

Note $d f_{\mu \nu \sigma} / d t=O\left(S^{2}\right)$ and Q is the approximate conserved quantity. (cf. $\left.K_{\mu \nu}=f_{\mu \sigma} f_{\nu}{ }^{\sigma}=r^{2} g_{\mu \nu}+2 \Sigma I_{(\mu} n_{\sigma)}\right)$

Equations of motion in the equatorial plane

Using conserved quantities E and J_{z}, EOM can be derived for spin-aligned binary in the equatorial plane

$$
\begin{aligned}
r^{2} \frac{d t}{d \tau} & =a\left[J_{z}-(a+s) E\right]+\frac{r^{2}+a^{2}}{\Delta} P\left(E, J_{z}, a, s ; r\right), \\
r^{4}\left(\frac{d r}{d \tau}\right)^{2} & =R\left(E, J_{z}, a, s ; r\right), \\
r^{2} \frac{d \phi}{d \tau} & =\left[J_{z}-(a+s) E\right]+\frac{a}{\Delta} P\left(E, J_{z}, a, s ; r\right),
\end{aligned}
$$

where a is the spin of the Kerr and $s^{2}=S_{\mu \nu} S^{\mu \nu} / 2 \mu^{2}$.
We can estimate orbital frequencies, Ω_{r} and Ω_{ϕ}, and compute energy flux using the energy-momentum tensor
$T^{a b}=\int d \tau\left\{p^{(a} v^{b)} \frac{\delta^{(4)}(x-z(\tau))}{\sqrt{-g}}-e_{\nu}^{(a} e_{\rho}^{b)} \nabla_{\mu} S^{\mu \nu} v^{\rho} \frac{\delta^{(4)}(x-z(\tau))}{\sqrt{-g}}\right\}$,

PN energy flux for spin-aligned binary in circular inspirals

	(spin) ${ }^{1}$	$(\text { spin })^{2}$	$(\text { spin })^{3}$
BHP	2.5PN for μ 's spin	-	-
	$[$ Tanaka et.al.(1996)]		
PN	3.5PN (NNLO)	3PN (NLO)	3.5PN (LO)
	[Bohé et.al.(2013)]	[Bohé et.al.(2015)]	[Marsat (2015)]

2.5PN energy flux for spin-alighed binary

$$
\begin{aligned}
\left\langle\frac{d E}{d t}\right\rangle= & -\frac{32}{5}\left(\frac{\mu}{M}\right)^{2}(M \Omega)^{10 / 3} \\
\times & {\left[1-\frac{1247}{336}(M \Omega)^{2 / 3}+\left(4 \pi-\frac{11}{4} q-\frac{5}{4} \hat{s}\right)(M \Omega)\right.} \\
& +\left(-\frac{44711}{9072}+\frac{33}{16} q^{2}+\frac{31}{8} q \hat{s}\right)(M \Omega)^{4 / 3} \\
& +(-\frac{8191}{672} \pi+\frac{59}{16} \underbrace{}_{\underbrace{q-\frac{13}{16}}_{\text {TBC } \ldots} \hat{s}})(M \Omega)^{5 / 3}]
\end{aligned}
$$

where $q=a / M$ and $\hat{s}=S / M$. [Tanaka et.al.(1996)]

- $q J_{z}$ terms may be larger than $\hat{s} J_{z}$ terms
- $q \hat{s}$ terms may be larger than q^{2} terms

Comparison with numerical results

[Numerical results : Harms et. al. (2015)]
\Rightarrow Relative error for Tanaka et. al. at 2.5 PN is $\sim 1 / p^{3}$ and better than RF

Comparison with numerical results

* $\left|1-d E d t^{\mathrm{PN}} / d E d t^{\text {Num }}\right|$ for $q=0.9, \hat{s}=0$, and $I=m=2$

[PN results: RF (2015), Numerical results : Harms et. al. (2015)]
\Rightarrow Relative error at 10 PN is $\sim 1 / p^{10}$ when $\hat{s}=0$

Summary

- Spinning particle around a Kerr black hole
* Energy flux for circular and spin-aligned orbits
- Comparison with PN and numerical results suggest our results are not correct
- Future
* BH absorption
* High PN calculation for circular orbits in the equatorial plane
* Eccentric and spin-aligned orbits in the equatorial plane
* Circular and slightly inclined orbits
* More generic orbits?

