Radiation reaction effect on orbital parameters of a spinning particle in Kerr spacetime

Ryuichi Fujita (藤田 龍一)

Instituto Superior Técnico, Portugal

19th Capra Meeting, Observatoire de Paris, June 27–July 1 2016

A spinning particle in Kerr spacetime

- Zeroth order in the mass ratio
 - Geodesic orbits with (E, L_z, C)
- First order in the mass ratio

Deviation from the geodesic orbits because of

- Radiation reaction
- Spin of the particle, ...

Ryuichi Fujita (CENTRA/IST)

GWs from a spinning particle in Kerr

< □ ▶

Equations of motion of the spinning particle

• At the linear order in the spin:

$$egin{array}{ll} \displaystyle rac{D}{d au} p^\mu(au) &=& \displaystyle -rac{1}{2} R^\mu_{\
u
ho\sigma}(z(au)) v^
u(au) S^{
ho\sigma}(au), \ \displaystyle rac{D}{d au} S^{\mu
u}(au) &=& \displaystyle 2 p^{[\mu}(au) v^{
u]}(au) (=0), \end{array}$$

where $v^{\mu}(\tau) = dz^{\mu}(\tau)/d\tau$, $p^{\mu}(\tau)$ and $S^{\mu\nu}(\tau)$ are the linear and spin angular momenta of the particle.

- * Hamiltonian can be found in Barausse+(2009), Vines+(2016).
- ★ Motion couples to the evolution of the spin
- ★ Frequencies of the motion and the spin precession?
- ★ Osculating geodesics? [Ruangsri+(2015)]

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲冊▶ ▲토▶ ▲토▶ - 토

Conserved quantities

$$\frac{E}{\mu} = u^{\mu}\xi_{\mu} - \frac{1}{2\mu}S^{\mu\nu}\xi_{\mu;\nu}; \quad \frac{J_{z}}{\mu} = u^{\mu}\chi_{\mu} - \frac{1}{2\mu}S^{\mu\nu}\chi_{\mu;\nu},
\frac{Q}{\mu^{2}} = \frac{1}{2}f_{\mu\sigma}f_{\nu}^{\ \sigma}u^{\mu}u^{\nu} - u^{\mu}\frac{S^{\rho\sigma}}{\mu}\left(f_{\ \sigma}^{\nu}f_{\mu\rho\nu} - f_{\mu}^{\ \nu}f_{\rho\sigma\nu}\right),$$

where

$$\begin{aligned} \xi_{\mu} &= \sqrt{\frac{\Delta}{\Sigma}} e^{0}_{\ \mu} + \frac{a\sin\theta}{\sqrt{\Sigma}} e^{3}_{\ \mu}; \quad \chi_{\mu} = a\sin^{2}\theta\sqrt{\frac{\Delta}{\Sigma}} e^{0}_{\ \mu} + \frac{(r^{2} + a^{2})\sin\theta}{\sqrt{\Sigma}} e^{3}_{\ \mu}, \\ f_{\mu\nu} &= 2a\cos\theta \ e^{1}_{\ [\mu}e^{0}_{\ \nu]} + 2r \ e^{2}_{\ [\mu}e^{3}_{\ \nu]}; \quad f_{\mu\nu\sigma} = f_{\mu\nu;\sigma}, \end{aligned}$$

and $e^a_{\ \mu}$ is the tetrad frame deined by

$$e^{0}_{\mu} = \left(\sqrt{\frac{\Delta}{\Sigma}}, 0, 0, -a\sin^{2}\theta\sqrt{\frac{\Delta}{\Sigma}}\right), e^{1}_{\mu} = \left(0, \sqrt{\frac{\Sigma}{\Delta}}, 0, 0\right),$$

$$e^{2}_{\mu} = \left(0, 0, \sqrt{\Sigma}, 0\right), e^{3}_{\mu} = \left(-\frac{a}{\sqrt{\Sigma}}\sin\theta, 0, 0, \frac{r^{2} + a^{2}}{\sqrt{\Sigma}}\sin\theta\right),$$

Note $df_{\mu\nu\sigma}/dt = O(S^2)$ and Q is the approximate conserved quantity. (cf. $K_{\mu\nu} = f_{\mu\sigma}f_{\nu}^{\ \sigma} = r^2g_{\mu\nu} + 2\Sigma I_{(\mu}n_{\sigma)})$

Ryuichi Fujita (CENTRA/IST)

Equations of motion in the equatorial plane

Using conserved quantities E and J_z , EOM can be derived for spin-aligned binary in the equatorial plane

$$r^{2}\frac{dt}{d\tau} = a[J_{z} - (a+s)E] + \frac{r^{2} + a^{2}}{\Delta}P(E, J_{z}, a, s; r),$$

$$r^{4}\left(\frac{dr}{d\tau}\right)^{2} = R(E, J_{z}, a, s; r),$$

$$r^{2}\frac{d\phi}{d\tau} = [J_{z} - (a+s)E] + \frac{a}{\Delta}P(E, J_{z}, a, s; r),$$

where *a* is the spin of the Kerr and $s^2 = S_{\mu\nu}S^{\mu\nu}/2\mu^2$. We can estimate orbital frequencies, Ω_r and Ω_{ϕ} , and compute energy flux using the energy-momentum tensor

$$T^{ab} = \int d\tau \left\{ p^{(a}v^{b)} \frac{\delta^{(4)}(x-z(\tau))}{\sqrt{-g}} - e^{(a}_{\nu}e^{b)}_{\rho}\nabla_{\mu}S^{\mu\nu}v^{\rho} \frac{\delta^{(4)}(x-z(\tau))}{\sqrt{-g}} \right\},$$

PN energy flux for spin-aligned binary in circular inspirals

	$(spin)^1$	(spin) ²	(spin) ³
BHP	2.5PN for μ 's spin	_	_
	[Tanaka et.al.(1996)]		
PN	3.5PN (NNLO)	3PN (NLO)	3.5PN (LO)
	[Bohé et.al.(2013)]	[Bohé et.al.(2015)]	[Marsat (2015)]

Ryuichi Fujita (CENTRA/IST)

GWs from a spinning particle in Kerr

Capra 19, 30 June 2016 6 / 10

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆

2.5PN energy flux for spin-alighed binary

$$\left\langle \frac{dE}{dt} \right\rangle = -\frac{32}{5} \left(\frac{\mu}{M}\right)^2 (M\Omega)^{10/3} \\ \times \left[1 - \frac{1247}{336} (M\Omega)^{2/3} + \left(4\pi - \frac{11}{4}q - \frac{5}{4}\hat{s}\right) (M\Omega) \right. \\ \left. + \left(-\frac{44711}{9072} + \frac{33}{16}q^2 + \frac{31}{8}q\hat{s} \right) (M\Omega)^{4/3} \right. \\ \left. + \left(-\frac{8191}{672}\pi + \frac{59}{16}q - \frac{13}{16}\hat{s} \right) (M\Omega)^{5/3} \right],$$

where q = a/M and $\hat{s} = S/M$. [Tanaka et.al.(1996)]

- $q J_z$ terms may be larger than $\hat{s} J_z$ terms
- $q\hat{s}$ terms may be larger than q^2 terms

Ryuichi Fujita (CENTRA/IST)

Comparison with numerical results

*
$$|1 - dEdt^{\text{PN}}/dEdt^{\text{Num}}|$$
 for $q = 0.9, \hat{s} = 0.9$, and $l = m = 2$

[Numerical results : Harms et. al. (2015)]

 \Rightarrow Relative error for Tanaka et. al. at 2.5PN is $\sim 1/p^3$ and better than RF

590

Comparison with numerical results

$$\star$$
 $|1 - dEdt^{\text{PN}}/dEdt^{\text{Num}}|$ for $q = 0.9, \hat{s} = 0$, and $l = m = 2$

[PN results: RF (2015), Numerical results : Harms et. al. (2015)]

 \Rightarrow Relative error at 10PN is $\sim 1/p^{10}$ when $\hat{s} = 0$

Ryuichi Fujita (CENTRA/IST)

Summary

• Spinning particle around a Kerr black hole

- ★ Energy flux for circular and spin-aligned orbits
 - Comparison with PN and numerical results suggest our results are not correct

• Future

- ★ BH absorption
- $\star\,$ High PN calculation for circular orbits in the equatorial plane
- \star Eccentric and spin-aligned orbits in the equatorial plane
- ★ Circular and slightly inclined orbits
- ★ More generic orbits?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

-∢ ∃ ▶

◀ ◻ ▶ ◀ ⋳ ▶