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Thank you, Steve.

I If it were not for Steve, I
would not be here.

I As a newcomer to the
self-force field, Steve’s
explanations always help
make physical sense of
very technical talks.



The problem.

We wish to determine the self-forced motion and field (e.g. energy
and angular momentum fluxes) of a particle with scalar charge

�ψret = −4πq

∫
δ(4)(x− z(τ)) dτ.

2 general approaches:

I Compute enough “geodesic”-based self-forces and then use
these to drive the motion of the particle. (Post-processing,
fast, accurate self-forces, relies on slow orbit evolution)

I Compute the “true” self-force while simultaneously driving the
motion. (Slow and expensive, less accurate self-forces)



Effective source approach.

... is a general approach to self-force and self-consistent orbital
evolution that doesn’t use any delta functions.

Key ideas

I Compute a regular field, ψR, such that the self-force is

Fα = ∇αψR|x=z,

where ψR = ψret − ψS, and ψS can be approximated via local
expansions: ψS = ψ̃S +O(εn).

I The effective source, S, for the field equation for ψR is regular at
the particle location.

�ψR = �ψret −�ψS = S(x|z, u)

where �ψS = −4πq
∫
δ(4)(x− z(τ)) dτ − S.



Self-consistent vs. geodesic evolutions.

I One main goal is to compare our self-consistent evolutions
with Niels Warburton’s geodesic evolutions.

I First attempt: 3+1 multi-patch finite difference code with a
C0 effective source.

I 3+1 accuracy limited by the non-smoothness of the source
leading to high frequency noise with 2nd order convergent
amplitude.

I Self-consistent evolutions agreed beautifully with geodesic
evolutions within the errors (dominated by the noise).

I Next attempt: 3+1 multi-patch finite difference code with a
C2 effective source.

I Geodesic evolution agreed with the C0 evolutions and the
frequency domain result with the noise reduced by more than
an order of magnitude.

I However, we found differences between C2 and C0 results as
soon as the back-reaction was turned on.



Discontinuous Galerkin method.

E0 E E E1 2 3

I Split the domain into
N nth order
elements.

I Each element
contains n+ 1 nodes.

I u(t, x) ≈∑n
i=0 ũ(t, xi)Pi(x)
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I The numerical approximation is double valued at all element
boundaries.

I Derivatives are approximated by multiplying the state vector
in each element by a derivative matrix.

I Neighboring elements are glued together by numerical fluxes.



Discontinuous Galerkin method.

I Numerical fluxes can be constructed in many different ways in
order to maintain numerical stability and to guarantee that
the jumps in the solution at the element boundaries converge
to zero.

I We use fluxes based on characteristic information.

The convergence properties of the DG method for smooth
solutions are

I Exponential with the order n (with N kept fixed).

I polynomial with the element size 1/N (with n kept fixed).

As the DG scheme has discontinuities built in at the element
boundaries, we retain these convergence properties even when the
solution itself is non-smooth IF and only if, the non-smooth
features can be placed at element boundaries.
(Hesthaven & Warburton, 2007)



Code description.

The code is a 1+1 dimensional code based on the spherical
harmonic decomposition of the scalar wave equation in
Schwarzschild tortoise coordinates r∗ = r + 2M log(r/(2M)− 1)
with a spherically harmonic decomposed effective source.

−∂
2ψ`m

∂t2
+
∂2ψ`m

∂r2
∗
− V`(r)ψ`m = Seff

`m.

As r∗ ∈ [−∞,∞] we split the domain into three regions. In the
inner (r∗ ∈ [−∞, T1]) and outer (r∗ ∈ [T2,∞]) regions we
introduce new coordinates (τ, ρ) used in Bernuzzi, Nagar &
Zenginoğlu (2011).

t = τ + h(ρ)

r∗ = ρ/Ω(ρ)

where h(ρ) and Ω(ρ) are chosen suitably (hyperboloidal layers) in
each region to make the inner boundary (ρmin) coincide with the
horizon H and the outer boundary (ρmax) coincide with I +.



Code description.

In the middle region (r∗ ∈ [T1, T2]) we introduce a time dependent
coordinate transformation (Field, Hesthaven & Lau, 2009)

t = λ

r∗ = T1 +
rp∗ − T1

ξp − T1
(ξ − T1) +

(T2 − rp∗)(ξp − T1)− (rp∗ − T1)(T2 − ξp)
(ξp − T1)(T2 − ξp)(T2 − T1)

(ξ − T1)(ξ − ξp)

where rp∗ is the time-dependent particle location. This satisfies r∗(λ, T1) = T1,
r∗(λ, ξ

p) = rp∗ , r∗(λ, T2) = T2.
In addition we use the world tube approach so that we evolve
ψR

`m = ψret
`m − ψS

`m in the region r∗ ∈ [W1,W2] (where typically W1 > T1 and
W2 < T2), while elsewhere we evolve ψret

`m.
The values of T1, W1, W2 and T2 is of course chosen to coincide with element
boundaries.

H T1 T2(λ, ξ)(τ, ρ) I +(τ, ρ)

W1 W2
ρmaxρmin

ψret
ℓm ψR

ℓm ψret
ℓm



Representative snapshots (e = 0.1, p = 9.9).
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Changes to the code since last year.

I We added the capability for the world-tube to be smaller than
the region with the time dependent coordinate transformation.
This allow us to use a smaller world-tube, resulting in higher
accuracy.

I We added checkpoint/restart capability allowing us to restart
at suitable time-steps with the option of changing some of the
parameters without having to rerun.

I We added acceleration terms to the effective source resulting
in the current effective source being less smooth than before.
Modes now converges as 1/((2`− 1)(2`+ 3)) instead of
1/((2`− 3)(2`− 1)(2`+ 3)(2`+ 5)).

I We added the capability of fitting the behavior of the high
`-modes and correct the sum over ` on the fly.

I Added self-force terms to the osculating orbit equations.



Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for accelerated circular orbit (r0 = 10, ω = 1
2ωg).
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Errors for accelerated circular orbit (r0 = 10, ω = 1
2ωg).
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Errors for accelerated circular orbit (r0 = 10, ω = 1
2ωg).
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Accelerated elliptical orbit (e0 = 0.1, p = 8).
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Self-consistent evolution (e0 = 0.1, p = 9.9).
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Conclusions and Outlook.

I Discontinuous Galerkin is a powerful numerical method that
allows us to overcome the non-smoothness of the effective
source.

I The accuracy has been improved and computational cost
reduced by at least 2 to 3 orders of magnitude.

I Eccentric geodesic orbits and constant accelerated circular
orbits works very well.

I Accelerated eccentric orbits and non-constant accelerated
circular orbits do not work yet (but seem to be really close).

I Self-consistent evolutions are just around the corner.

I We have a finite difference prototype of a coupled mode
evolution code for scalar fields in Kerr (to be ported to DG).

I Gravitational perturbation codes (both Lorentz and
Regge-Wheeler) are in various stages of development/testing.


