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Unbound orbits: why they are interesting

Give access to new (pseudo) gauge-invariant quantities that can
serve as strong-field benchmarks:

IBCO frequency shift
scattering angles for hyperbolic-like encounters
...

Relate ADM properties of the binary to SF quantities, already at
first order, by exploiting the fact that the two bodies are infinitely
separated

Important for the overspinning problem, where “dangerous” orbits
come from infinity

High-energy scattering of black holes as a model for ultra-relativistic
collisions of point-particles



Numerical framework and system considered

We specialise to marginally bound orbits (E = 1) in Schwarzschild,
where the linearised Einstein equations are fully separable in the
time-domain

We evolve the metric perturbation in Lorenz gauge, on a double null
grid (Barack and Sago 2010)
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Figure 1: From Barack and Sago, Phys. Rev. D, vol. 81, p. 084021, Apr
2010



Lorenz gauge in time-domain

Lorenz gauge in time-domain

Can handle any type of orbit

Framework has been tested thoroughly

Computationally expensive, slow even at moderate resolutions

In Kerr must resort to 2+1 evolution: even more expensive!

Ways forward

Within Lorenz: Parallelisation

Teukolsky in time-domain?



Marginally bound orbits I

Three different orbits sharing the same E,L in the geodesic
approximation:

1 IBCO (innermost bound circular orbit) at r = 4M
2 outbound: starting from the IBCO and going out to infinity
3 inbound: starting from infinity and asymptoting to the IBCO



Marginally bound orbits II

Impose conditions at infinity and at the whirl R = R0 + δR

ṙ(r →∞) = 0,

ṙ(R) = 0,

r̈(R) = 0,

Relate energy/angular momentum at the whirl to the ones at infinity
through integrals of the SF

δE(R0)− δE(∞) = −
∫ R0

∞

Ft
µ

dr

ṙ
:= ∆E,

δL(R0)− δL(∞) =

∫ R0

∞

Fφ
µ

dr

ṙ
:= ∆L.

Closed system of equations



Constraint equations

By imposing the circularity conditions and requiring that the small mass
is at rest at infinity one gets

δE(∞) = 0,

δR = −8M∆E − 32M2F
r(R0)

µ
,

δL(∞) = 8M∆E −∆L.



Conservative shift to the IBCO frequency

The frequency of the IBCO (at fixed energy at infinity) in an
asymptotically flat gauge is shifted by the conservative self force

Ω2
F = Ω2

0

(
1− η + 6∆E + 16

M

µ
F r(4M)

)
,

where the η term “flattens out” the Lorenz gauge monopole.

Inbound and outbound orbits are time-reversed versions of each
other → use both to compute the conservative self-force along one
of the two:

F tcons(r) =

(
F tret,in(r)− F tret,out(r)

)

2
.



Evolution of low modes

In Lorenz gauge the modes ` = 0 and ` = 1,m = 1 do not evolve stably:
linear-in-time gauge modes (homogeneous, regular solutions of the field
equations) contaminate the data.

Possible strategies

1 Correct initial conditions

2 Generalised Lorenz gauge: ∇αh̄αβ = Hβ , with Hβ → 0 when
t�M

3 Numerical filtering

4 ...



Evolution of low modes: our implementation

` = 0

outbound orbit: use the (analytical) circular solution to construct
initial conditions → evolution is stable!

inbound orbit: design a suitable gauge mode with the characteristics
observed in the evolution (constant trace, linear-in-t...) and subtract
it from the numerical data (Dolan and Barack, 2013)

` = 1,m = 1

Numerical filtering for both orbits



Numerical filtering: discussion

Easy to implement, the gauge modes can be subtracted in the
post-processing phase
Ad hoc procedure, needs to be tailored to the specific type of orbit
that is being evolved
Implies loss of accuracy!
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How the SF looks like
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Computation of ∆E

∆E = −
∫ ∞

−∞

Ft
µ
dτ

Formally an integral over in infinite domain, in practice

Neglect the contribution from the region 4M ≤ r ≤ (4 + ε)M
(ε ∼ 10−6)

Fit the data in the far field region 100M ≤ r ≤ 130M to a
power-law model and integrate that analytically

Numerically integrate over the remaining domain.

Current limitations

Considerable noise coming from ` & 10 in the strong field region

Evolution is expensive! We run over a rather limited domain
(∼ 130M) and this implies the fit in the far-field region is not
extremely accurate



SF and the first law

The conservative IBCO shift at fixed energy can be computed from
the shift in the binding energy at fixed

x := ((1 + η)MΩ)2/3

and it reads

δΩ(E) := Ω− Ω0 = − 1

8M

(
η + 3δE|x=1/4

)
,

Using the first law of binary black hole mechanics δE|x=1/4 can be
computed from the redshift z and its first derivative

Following Akcay et al. (2012) one can compute z(x) for arbitrary
values of x (relying on knowledge of huu along circular orbits)

Direct comparison of SF-calculation along unbound orbits and first-law!



Results

Result obtained using the first law

δΩ(E) = 0.0692008...
η

M
,

Result obtained using our time-domain code

δΩ(E) = 0.069(2)
η

M

Results are consistent but at the moment we have limited accuracy



Calibration of EOB: an example

The shift in the IBCO frequency can be related to the derivative of
the function a(u = 1/r), which features in the EOB effective metric

ds2eff = −A(r; ν)dt2 + B̄(r; ν)dr2 + r2
(
dθ2 + sin θ2 dφ2

)
,

where ν = µM/(µ+M)2.

For the innermost stable circular orbit, x(u) can be related to A

x(u) = u

(−∂uA(u)

2

)1/3

Damour 2010

For EMRIs ν ∼ η � 1

A(u; ν) = 1− 2u+ a(u)ν +O(ν2)

and compare with SF.



Calibration of the a potential: results

Combine EOB and SF

Ω2
F = Ω2

0 (1 + ν (∂ua(1/4)− 2))

Ω2
F = Ω2

0

(
1− η + 6∆E + 16

M

µ
F r(4M)

)

Our result

∂ua(1/4) = 2

(
1 +

δΩ

ηΩ0

)
= 3.10(8).

Previous result

∂ua(1/4) = 3.107206... (Akcay et al.)



Conclusions

We presented a first computation of the IBCO shift via a full GSF
calculation along unbound orbits

The result is consistent with the one obtained by looking at circular
orbits and applying the first law of binary black hole mechanics

Our framework represents a totally independent tool to calibrate
EOB and could be used to study hyperbolic-like orbits


