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Steve and Gauge

Steve (with emphasis): “Anything physical must be gauge
invariant.”

I 2nd order paper makes no mention of gauge
I Detweiler Redshift variable
I Initially did S-R (Detweiler-Whiting) split without gauge

(2000)



Gauge
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I Gauge Freedom
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Description of a gauge transformation from Bardeen: ”In discussing perturbations one is dealing with two
spacetimes–the physical, perturbed spacetime and a fictitious background spacetime. A one-to-one correspondence
between points in the background and points in the physical spacetime carries a set of coordinates from the
background to the physical spacetime and defines a choice of ”gauge.” A change in the correspondence, keeping
the background coordinates fixed is called a gauge transformation, to be distinguished from a coordinate
transformation which changes the labeling of points in the background and physical spacetime together.”



Gauge Invariance

Background M0 and Physical M

Gauge
I Correspondence (diffeomorphism) φ : M0 → M

Perturbation
I Difference between pullback and background: h = φ∗g − g0

Gauge Transformation
I Switch from φ to ψ: hφ − hψ = £ξg0

Gauge Invariant
I T on M such that φ∗T is the same for all φ (Sachs 1963)
I But this is not quite right...



T on M such that φ∗T is the same for all φ (Sachs 1963)
I Too restrictive on T (only vanishing tensor fields, constant or

zero scalar fields)
I φ∗T is a tensor field on background M0

I we care about value on M
I we make measurements on M

I Consider instead φ∗T0



Practical Understanding

I Gauge as arbitrary diffeomorphism
I Very Abstract
I Admittedly useless for calculations

I More familiar notions of gauge set conditions on hab
I RW gauge - some components zero
I Detweiler’s Easy Gauge - some other components zero

I How to set a gauge
I Start in some arbitrary gauge (no components zero)
I Transform to another arbitrary gauge: hφ − hψ = £ξg
I Choose ξ ”carefully”



A-K Notation
I Choose Schwarzschild coordinates

va = (−1, 0, 0, 0), na = (0, 1, 0, 0),

I Metric Perturbation Decomposition

h`mab = A vavbY `m + 2 B vg
(aY E ,`m

b) + 2 C vg
(aY B,`m

b) + 2 D vg
(aY R,`m

b)

+ E T T 0,`m
ab + F T E2,`m

ab + G T B2,`m
ab

+ 2 H T E1,`m
ab + 2 J T B1,`m

ab + K T L0,`m
ab .

I Can be translated to RW notation
I New notation introduced “with trepidation”

I Gauge vector
ξa = P vaY`m + R naY`m + S Y E ,`m

a + Q Y B,`m
a ,



Gauge Transformation
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Gauge Invariants

Solve Algebraically
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Steve’s method gives 8 of these



Easy Gauge
I Haven’t chosen components of gauge vector

I Easy Gauge: choose gauge vector so that B = E = F = G = 0

I Reduces complexity of gauge invariants
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I Can also write Einstein tensor in terms of gauge-invariants



Second-Order

Steve: “When I write papers I like to keep myself grounded. I
don’t like to introduce a lot of formalism.”

I Use point particle
I Expand Einstein Tensor
I Sub in Deweiler-Whiting decomposition
I Rearrange and cancel



Point Particles in GR

I Geroch and Traschen - No point particles in GR

I Worst behaved metrics still can’t produce point particle

I Example: Schwarzschild solution
I “On the gravitational field of a mass point according to

Einstein’s theory” (Schwarzschild 1916)
I Only mixed stress-energy is defined T a

b = −mδ3(x)δa
0δ

0
b

I Anything else has products of distributions
I Colombeau algebra not fully developed (GR makes it worse)

I Shows up similarly in G (2)
ab (g0, h1) on worldline

I Detweiler gives special attention to the worldline


