Aspects of Steven Detweiler's approach to second-order

Hector Chen
University of Florida

Capra 19
June 28, 2016

Steve and Gauge

Steve (with emphasis): "Anything physical must be gauge invariant."

- 2nd order paper makes no mention of gauge
- Detweiler Redshift variable
- Initially did S-R (Detweiler-Whiting) split without gauge (2000)

Gauge

- Gauge Invariance
- Gauge Freedom
- Gauge Transformation
- Gauge
- Gauge in Perturbation Theory
- Gauge in General Relativity
- Gauge in QFT

Gauge Confusion

- Gauge Invariance
- Gauge Freedom
- Gauge Transformation
- Gauge
- Gauge in Perturbation Theory
- Gauge in General Relativity
- Gauge in QFT

Description of a gauge transformation from Bardeen: "In discussing perturbations one is dealing with two spacetimes-the physical, perturbed spacetime and a fictitious background spacetime. A one-to-one correspondence between points in the background and points in the physical spacetime carries a set of coordinates from the background to the physical spacetime and defines a choice of "gauge." A change in the correspondence, keeping the background coordinates fixed is called a gauge transformation, to be distinguished from a coordinate transformation which changes the labeling of points in the background and physical spacetime together."

Gauge Invariance

Background M_{0} and Physical M
Gauge

- Correspondence (diffeomorphism) $\phi: M_{0} \rightarrow M$

Perturbation

- Difference between pullback and background: $h=\phi^{*} g-g_{0}$

Gauge Transformation

- Switch from ϕ to $\psi: h_{\phi}-h_{\psi}=£_{\xi} g_{0}$

Gauge Invariant

- T on M such that $\phi^{*} T$ is the same for all ϕ (Sachs 1963)
- But this is not quite right...

T on M such that $\phi^{*} T$ is the same for all ϕ (Sachs 1963)
- Too restrictive on T (only vanishing tensor fields, constant or zero scalar fields)
- $\phi^{*} T$ is a tensor field on background M_{0}
- we care about value on M
- we make measurements on M
- Consider instead $\phi_{*} T_{0}$

Practical Understanding

- Gauge as arbitrary diffeomorphism
- Very Abstract
- Admittedly useless for calculations
- More familiar notions of gauge set conditions on $h_{a b}$
- RW gauge - some components zero
- Detweiler's Easy Gauge - some other components zero
- How to set a gauge
- Start in some arbitrary gauge (no components zero)
- Transform to another arbitrary gauge: $h_{\phi}-h_{\psi}=£_{\xi} g$
- Choose ξ "carefully"

A-K Notation

- Choose Schwarzschild coordinates

$$
v_{a}=(-1,0,0,0), \quad n_{a}=(0,1,0,0)
$$

- Metric Perturbation Decomposition

$$
\begin{aligned}
h_{a b}^{\ell m} & =\mathrm{A} v_{a} v_{b} Y^{\ell m}+2 \mathrm{~B} v_{(a} Y_{b)}^{E, \ell m}+2 \mathrm{C} v_{(a} Y_{b)}^{B, \ell m}+2 \mathrm{D} v_{(a} Y_{b)}^{R, \ell m} \\
& +\mathrm{E} T_{a b}^{T 0, \ell m}+\mathrm{F} T_{a b}^{E 2, \ell m}+\mathrm{G} T_{a b}^{B 2, \ell m} \\
& +2 \mathrm{H} T_{a b}^{E 1, \ell m}+2 \mathrm{~J} T_{a b}^{B 1, \ell m}+\mathrm{K} T_{a b}^{L 0, \ell m} .
\end{aligned}
$$

- Can be translated to RW notation
- New notation introduced "with trepidation"
- Gauge vector

$$
\xi_{a}=\mathrm{P} v_{a} Y_{\ell m}+\mathrm{R} n_{a} Y_{\ell m}+\mathrm{S} Y_{a}^{E, \ell m}+\mathrm{Q} Y_{a}^{B, \ell m}
$$

Gauge Transformation

$$
\begin{aligned}
& \Delta \mathrm{A}=-2\left(\frac{\partial}{\partial t} \mathrm{P}\right)-\left(\frac{2(r-2 M) M}{r^{3}}\right) \mathrm{R} \\
& \Delta \mathrm{~B}=\frac{1}{r} \mathrm{P}-\frac{\partial}{\partial t} \mathrm{~S} \\
& \Delta \mathrm{D}=\left(\frac{\partial}{\partial r}-\frac{2 M}{r(r-2 M)}\right) \mathrm{P}-\frac{\partial}{\partial t} \mathrm{R} \\
& \Delta \mathrm{E}=\frac{2(r-2 M)}{r^{2}} \mathrm{R}-\frac{\ell(\ell+1)}{r} \mathrm{~S} \\
& \Delta \mathrm{~F}=\frac{2}{r} \mathrm{~S} \\
& \Delta \mathrm{H}=\frac{1}{r} \mathrm{R}+\left(\frac{\partial}{\partial r}-\frac{1}{r}\right) \mathrm{S} \\
& \Delta \mathrm{~K}=\left(2 \frac{\partial}{\partial r}+\frac{2 M}{r(r-2 M)}\right) \mathrm{R} \\
& \Delta \mathrm{C}=-\frac{\partial}{\partial t} \mathrm{Q} \\
& \Delta \mathrm{G}=\frac{2}{r} \mathrm{Q} \\
& \Delta \mathrm{~J}=\left(\frac{\partial}{\partial r}-\frac{1}{r}\right) \mathrm{Q}
\end{aligned}
$$

Gauge Invariants

Solve Algebraically

$$
\begin{aligned}
\mathrm{Q} & =\frac{1}{2} r \Delta \mathrm{G} \\
\frac{d \mathrm{Q}}{d r} & =\Delta \mathrm{J}+\frac{1}{2} \Delta \mathrm{G}
\end{aligned}
$$

$$
\Delta \mathrm{J}-\frac{r}{2}\left(\frac{\partial}{\partial r} \Delta \mathrm{G}\right)=0
$$

Thus

$$
\alpha=\mathrm{J}-\frac{r}{2}\left(\frac{\partial}{\partial r} \mathrm{G}\right)
$$

Steve's method gives 8 of these

Easy Gauge

- Haven't chosen components of gauge vector
- Easy Gauge: choose gauge vector so that $B=E=F=G=0$
- Reduces complexity of gauge invariants

$$
\begin{aligned}
o & =\frac{1}{2}\left(\frac{\partial}{\partial r} \mathrm{~A}\right)+\frac{2 M}{r-2 M}\left(\frac{\partial}{\partial t} \mathrm{~B}\right)+\frac{\partial}{\partial t} \mathrm{D}+\frac{r^{2}}{2(r-2 M)}\left(\frac{\partial^{2}}{\partial t^{2}} \mathrm{E}\right) \\
& +\frac{r[4 M+r \ell(\ell+1)]}{4(r-2 M)}\left(\frac{\partial^{2}}{\partial t^{2}} \mathrm{~F}\right)+\frac{M}{2 r}\left(\frac{\partial}{\partial r}-\frac{1}{r}\right) \mathrm{E}+\frac{M \ell(\ell+1)}{4 r}\left(\frac{\partial}{\partial r}-\frac{1}{r}\right) \mathrm{F}
\end{aligned}
$$

- Can also write Einstein tensor in terms of gauge-invariants

Second-Order

Steve: "When I write papers I like to keep myself grounded. I don't like to introduce a lot of formalism."

- Use point particle
- Expand Einstein Tensor
- Sub in Deweiler-Whiting decomposition
- Rearrange and cancel

Point Particles in GR

- Geroch and Traschen - No point particles in GR
- Worst behaved metrics still can't produce point particle
- Example: Schwarzschild solution
- "On the gravitational field of a mass point according to Einstein's theory" (Schwarzschild 1916)
- Only mixed stress-energy is defined $T^{a}{ }_{b}=-m \delta^{3}(x) \delta^{a}{ }_{0} \delta^{0}{ }_{b}$
- Anything else has products of distributions
- Colombeau algebra not fully developed (GR makes it worse)
- Shows up similarly in $G_{a b}^{(2)}\left(g^{0}, h^{1}\right)$ on worldline
- Detweiler gives special attention to the worldline

