Completion of metric reconstruction for a particle orbiting a Kerr black hole

Cesar Merlin (Southampton)
Amos Ori (Technion)
Maarten van de Meent (Southampton)
Adam Pound (Southampton)
Leor Barack (Southampton)

1. Motivation \& statement of the problem

 1.1 Recent developmentsCompletion Problem (aka " $\ell=0,1$ " problem) occupied Capra community since early 2000s. Must be addressed to take full advantage of 3 recent developments:

- Progress on metric reconstruction from Weyl curvature scalars, for an orbiting particle [Ori (2003); Keidl, Friedman, Shah et al (2007-2012); van de Meent \& Shah (2015)]
- Formulation of self-force and motion from a reconstructed metric, with a practical mode-sum formula [Pound, Merlin \& LB (2014)]
- Advances in semi-analytic methods for solving the Teukolsky equation, based on the Mano-Suzuki-Takasugi (MST) approach [Hughes; Shah et al; van de Meent \& Shah; Bini \& Damour; Kavanagh et al; . .]

1. Motivation \& statement of the problem

 1.2 Progress on metric reconstruction- Reconstruction in vacuum [Chrzanowski 1975; Cohen \& Kegeles 1979 (CCK); Wald 1973, 1978; Stewart 1979; Lousto \& Whiting 2002]
Let $h_{a b}$ be a vacuum metric perturbation of Kerr and ψ_{4} associated Weyl scalar. Then, given any Ψ satisfying

$$
\square_{\text {Teukolsky }} \Psi=0, \quad D^{4} \Psi=\psi_{4},
$$

$h_{a b}$ may be reproduced ("reconstructed") using

$$
h_{a b}^{(\mathrm{rec})}=\mathcal{D}_{C C K}^{(2)} \psi,
$$

to within a gauge perturbation and a linear combination of 4 "trivial" homogeneous solutions:

$$
c_{1} h_{a b}^{\delta M}+c_{2} h_{a b}^{\delta J}+c_{3} h_{a b}^{\mathrm{C} \text { metric }}+c_{4} h_{a b}^{\text {KerrNUT }} .
$$

Completion: the task of determining c_{n}.

1. Motivation \& statement of the problem

 1.2 Progress on metric reconstruction (cont'd)- In presence of matter sources, CCK procedure fails to yield a valid solution even in vacuum away from sources [LB \& Ori 2001; Price \& Whiting 2007]
- Reconstruction for bound orbits, with string-like gauge singularities [Ori 2003]
- Reconstruction for circular equatorial orbits, with gauge discontinuity on a sphere [Keidl, Friedman etal (2007-2012)]
- Extension to any bound equatorial orbit [van de Meent \& Shah (2015)]

1. Motivation \& statement of the problem

1.3 Self-force from a reconstructed metric [Pound, Merlin \& LB (2014)]

Two alternative mode-sum schemes:

$$
F_{\alpha}^{ \pm}=\sum_{\ell=0}^{\infty}\left[\left(F_{\alpha}\right)_{ \pm}^{\ell}-(\ell+1 / 2) A_{\alpha}^{ \pm}-B_{\alpha}\right]-\delta D_{\alpha}^{ \pm}
$$

in a local Lorenz deformation of either of the half-string radiation gauges

$$
F_{\alpha}=\sum_{\ell=0}^{\infty}\left[\frac{1}{2}\left(F_{\alpha}\right)_{+}^{\ell}+\frac{1}{2}\left(F_{\alpha}\right)_{-}^{\ell}-B_{\alpha}\right]
$$

in a no-string radiation gauge

- $A_{\alpha}^{ \pm}$and B_{α} are Lorenz-gauge regularization parameters.
- Values of $\delta D_{\alpha}^{ \pm}$depend on off-particle extension used to define $\left(F_{\alpha}\right)_{ \pm}^{\ell}$.
- $\left(F_{\alpha}\right)_{ \pm}^{\ell}$ are constructed from the modes of the completed perturbations $h_{\alpha \beta}^{ \pm}$.

1. Motivation \& statement of the problem

1.4 Completion for a particle source

- Need to determine $c^{ \pm}$in

$$
h_{a b}^{\text {(comp) } \pm}:=c_{1}^{ \pm} h_{a b}^{\delta M}+c_{2}^{ \pm} h_{a b}^{\delta J}+c_{3}^{ \pm} h_{a b}^{\text {C metric }}+c_{4}^{ \pm} h_{a b}^{\text {KerrNUT }}
$$

- $c_{3}^{ \pm}=0=c_{4}^{ \pm}$from regularity [Keidl, Shah, Friedman, Kim \& Price (2010)]
- c_{1}^{+}and c_{2}^{+}are readily determined from $r \rightarrow \infty$ asymptotics, given total ADM mass and angular-momentum of system.
- So, the task is to determine the pair of constants c_{1}^{-}and c_{2}^{-}, or, equivalently

$$
[\mathcal{E}]:=c_{1}^{+}-c_{1}^{-}, \quad[\mathcal{J}]:=c_{2}^{+}-c_{2}^{-}
$$

1. Motivation \& statement of the problem

1.4 Completion for a particle source

- Need to determine $c^{ \pm}$in

$$
h_{a b}^{(\text {comp }) \pm}:=c_{1}^{ \pm} h_{a b}^{\delta M}+c_{2}^{ \pm} h_{a b}^{\delta J}+c_{3}^{ \pm} h_{a b}^{\text {C metric }}+c_{4}^{ \pm} h_{a b}^{\text {KerrNUT }}
$$

- $c_{3}^{ \pm}=0=c_{4}^{ \pm}$from regularity [Keidl, Shah, Friedman, Kim \& Price (2010)]
- c_{1}^{+}and c_{2}^{+}are readily determined from $r \rightarrow \infty$ asymptotics, given total ADM mass and angular-momentum of system.
- So, the task is to determine the pair of constants c_{1}^{-}and c_{2}^{-}, or, equivalently

$$
[\mathcal{E}]:=c_{1}^{+}-c_{1}^{-}, \quad[\mathcal{J}]:=c_{2}^{+}-c_{2}^{-}
$$

Why not just use F_{α}^{+}?

- Calculation of δD_{α}^{+}is hard and subtle
- Wish to have control over internal perturbation and mass of black hole

2. Earlier attempts at the problem

- Larry Price (PhD thesis, 2007): Demand that $h_{a b}^{\text {comp }+}$ and $h_{a b}^{\text {comp- }}$ match smoothly on $\overline{\mathcal{S}}$ up to a gauge transformation. Makes sense under the assumption that $h_{a b}^{\text {rec }+}$ and $h_{a b}^{\text {rec- }}$ can be matched smoothly (up to gauge). Applied for Schwarzschild (circular orbits) only.

2. Earlier attempts at the problem

- Larry Price (PhD thesis, 2007): Demand that $h_{a b}^{\text {comp }+}$ and $h_{a b}^{\text {comp- }}$ match smoothly on $\overline{\mathcal{S}}$ up to a gauge transformation. Makes sense under the assumption that $h_{a b}^{\text {rec }+}$ and $h_{a b}^{\text {rec- }}$ can be matched smoothly (up to gauge). Applied for Schwarzschild (circular orbits) only.
- Shah, Friedman \& Keidl (2012): Fix the Komar mass and AM of (the stationary and axisymmetric piece of) the perturbed spacetime at $r \rightarrow \infty$ and on the horizon, assuming $h_{a b}^{\text {rec } \pm}$ have no contribution. Applied for circular orbits in Kerr, where they get the correct answer.

2. Earlier attempts at the problem

- Larry Price (PhD thesis, 2007): Demand that $h_{a b}^{\text {comp+ }}$ and $h_{a b}^{\text {comp- }}$ match smoothly on $\overline{\mathcal{S}}$ up to a gauge transformation. Makes sense under the assumption that $h_{a b}^{\text {rec }+}$ and $h_{a b}^{\text {rec- }}$ can be matched smoothly (up to gauge). Applied for Schwarzschild (circular orbits) only.
- Shah, Friedman \& Keidl (2012): Fix the Komar mass and AM of (the stationary and axisymmetric piece of) the perturbed spacetime at $r \rightarrow \infty$ and on the horizon, assuming $h_{a b}^{\text {rect }}$ have no contribution. Applied for circular orbits in Kerr, where they get the correct answer.
- Dolan \& LB (2013), following Abbot \& Desser (1982): Quasi-local conserved integrals (requiring only background symmetries) may be used to determine mass and AM content of $h_{a b}^{\mathrm{rec} \pm}$. Can be used to easily fix completion piece in Schwarzschild, but hard to apply in Kerr.

2. Earlier attempts at the problem

- Larry Price (PhD thesis, 2007): Demand that $h_{a b}^{\text {comp+ }}$ and $h_{a b}^{\text {comp- }}$ match smoothly on $\overline{\mathcal{S}}$ up to a gauge transformation. Makes sense under the assumption that $h_{a b}^{\text {rec }+~ a n d ~} h_{a b}^{\text {rec- }}$ can be matched smoothly (up to gauge). Applied for Schwarzschild (circular orbits) only.
- Shah, Friedman \& Keidl (2012): Fix the Komar mass and AM of (the stationary and axisymmetric piece of) the perturbed spacetime at $r \rightarrow \infty$ and on the horizon, assuming $h_{a b}^{\text {rec } \pm}$ have no contribution. Applied for circular orbits in Kerr, where they get the correct answer.
- Dolan \& LB (2013), following Abbot \& Desser (1982): Quasi-local conserved integrals (requiring only background symmetries) may be used to determine mass and AM content of $h_{a b}^{\mathrm{rec} \pm}$. Can be used to easily fix completion piece in Schwarzschild, but hard to apply in Kerr.
- Sano \& Tagoshi (2014): Considered a rotating circular mass ring. Require continuity on $\overline{\mathcal{S}}$ of the metric perturbation and of $\psi_{1}, \psi_{2}, \psi_{3}$. However, allow for singularities in the equatorial plane in/outside the ring, so uniqueness of completion unclear.

3. Our strategy

Determine $[\mathcal{E}]$ and $[\mathcal{J}]$ by demanding that certain gauge-invariant fields constructed from the completed perturbation are continuous on $\overline{\mathcal{S}}$:

$$
\left.\mathcal{I}\left(h_{a b}^{\mathrm{rec}+}+h_{a b}^{\mathrm{comp}+}\right)\right|_{\bar{s}}=\left.\mathcal{I}\left(h_{a b}^{\mathrm{rec}-}+h_{a b}^{\mathrm{comp}-}\right)\right|_{\bar{s}}
$$

(Need two such conditions: either two invariants evaluated at a certain θ, or a single invariant evaluated at two values of θ.)

The resulting completed perturbation (unlike $h^{\text {rec }}$) should be a vacuum solution of the linearized EFE anywhere off the particle. But it is not necessarily smooth (or even continuous) across $\overline{\mathcal{S}}$.

Here we do not take on the more ambitious task of "gauge smoothing", which is required for some applications (cf. Maarten van de Meent's talk).

4. Auxiliary gauge-invariant fields

- Introduce a reference gauge, in which $\delta \psi_{2}=0$:

$$
\begin{gathered}
\delta \psi_{2}^{\text {orig }} \rightarrow \delta \psi_{2}^{\text {ref }}=\delta \psi_{2}^{\text {orig }}-\xi^{\alpha} \psi_{2, \alpha}^{(0)} \equiv 0 \\
\Rightarrow \quad \xi^{r}=\frac{\operatorname{Re}\left(\varrho^{-4} \delta \psi_{2}^{\text {orig }}\right)}{3 M}, \quad \xi^{\theta}=\frac{\operatorname{Im}\left(\varrho^{-4} \delta \psi_{2}^{\text {orig }}\right)}{3 M a \sin \theta}
\end{gathered}
$$

where $\varrho:=-(r-i a \cos \theta)^{-1}$. So reference gauge is determined up to ξ^{t}, ξ^{ϕ}.

4. Auxiliary gauge-invariant fields

- Introduce a reference gauge, in which $\delta \psi_{2}=0$:

$$
\begin{gathered}
\delta \psi_{2}^{\text {orig }} \rightarrow \delta \psi_{2}^{\text {ref }}=\delta \psi_{2}^{\text {orig }}-\xi^{\alpha} \psi_{2, \alpha}^{(0)} \equiv 0 \\
\Rightarrow \quad \xi^{r}=\frac{\operatorname{Re}\left(\varrho^{-4} \delta \psi_{2}^{\text {orig }}\right)}{3 M}, \quad \xi^{\theta}=\frac{\operatorname{Im}\left(\varrho^{-4} \delta \psi_{2}^{\text {orig }}\right)}{3 M a \sin \theta}
\end{gathered}
$$

where $\varrho:=-(r-i a \cos \theta)^{-1}$. So reference gauge is determined up to ξ^{t}, ξ^{ϕ}.

- The $\{r r, r \theta, \theta \theta\}$ components of the perturbation in the reference gauge,

$$
h_{\alpha \beta}^{\mathrm{ref}}=h_{\alpha \beta}^{\mathrm{orig}}-2 \xi_{\alpha, \beta}+2 \Gamma_{\alpha \beta}^{(0) \gamma} \xi_{\gamma}
$$

are completely determined from $\left\{\xi^{r}, \xi^{\theta}\right\}$.

- So take $\left\{\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}\right\}:=\left\{h_{r r}^{\text {ref }}, h_{\theta \theta}^{\text {ref }}, h_{r \theta}^{\text {ref }}\right\}$ as our invariant fields. Think of each of these as a (3rd-order) differential operator on $h_{\alpha \beta}^{\text {orig }}$.

4. Auxiliary gauge-invariant fields

- Introduce a reference gauge, in which $\delta \psi_{2}=0$:

$$
\begin{gathered}
\delta \psi_{2}^{\text {orig }} \rightarrow \delta \psi_{2}^{\text {ref }}=\delta \psi_{2}^{\text {orig }}-\xi^{\alpha} \psi_{2, \alpha}^{(0)} \equiv 0 \\
\Rightarrow \quad \xi^{r}=\frac{\operatorname{Re}\left(\varrho^{-4} \delta \psi_{2}^{\text {orig }}\right)}{3 M}, \quad \xi^{\theta}=\frac{\operatorname{Im}\left(\varrho^{-4} \delta \psi_{2}^{\text {orig }}\right)}{3 M a \sin \theta}
\end{gathered}
$$

where $\varrho:=-(r-i a \cos \theta)^{-1}$. So reference gauge is determined up to ξ^{t}, ξ^{ϕ}.

- The $\{r r, r \theta, \theta \theta\}$ components of the perturbation in the reference gauge,

$$
h_{\alpha \beta}^{\mathrm{ref}}=h_{\alpha \beta}^{\mathrm{orig}}-2 \xi_{\alpha, \beta}+2 \Gamma_{\alpha \beta}^{(0) \gamma} \xi_{\gamma}
$$

are completely determined from $\left\{\xi^{r}, \xi^{\theta}\right\}$.

- So take $\left\{\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}\right\}:=\left\{h_{r r}^{\text {ref }}, h_{\theta \theta}^{\text {ref }}, h_{r \theta}^{\text {ref }}\right\}$ as our invariant fields. Think of each of these as a (3rd-order) differential operator on $h_{\alpha \beta}^{\text {orig }}$.
- For $a=0$ take instead $\left\{\mathcal{I}_{1}, \mathcal{I}_{2}\right\}:=\left\{h_{r r}^{\text {ref }}, \operatorname{Im}\left(\delta \psi_{2}^{\text {orig }}\right)\right\}$.

5. Determination of the completion amplitudes:
 5.1 Circular equatorial orbits in Kerr

Step 1: Write the Stationary \& axisymmetric part of ψ_{4} as a sum over harmonics:

$$
\psi_{4}^{\mathrm{SAS}}=\varrho^{4} \sum_{\ell=2}^{\infty} R_{\ell}(r){ }_{-2} Y_{\ell 0}(\theta)
$$

Step 2: Solve the inhomogeneous Teukolsky equation with regular BCs, to obtain

$$
R_{\ell}\left(r ; r_{0}\right)=C_{\ell}^{+}\left(r_{0}\right) R_{\ell}^{+}(r) \theta\left(r-r_{0}\right)+C_{\ell}^{-}\left(r_{0}\right) R_{\ell}^{-}(r) \theta\left(r_{0}-r\right)+C_{\ell}^{\delta}\left(r_{0}\right) \delta\left(r-r_{0}\right)
$$

where $R_{\ell}^{ \pm}$are suitable homogeneous solutions, and $C_{\ell}^{ \pm}=\left.\left.\sum_{n, j=0}^{2} \alpha_{n j}\left(r_{0}\right) \frac{d^{n} R_{\ell}^{\mp}}{d r^{n}}\right|_{r_{0}} \frac{d^{j}{ }_{2} Y_{\ell 0}}{d \theta^{j}}\right|_{\theta_{0}}$.
Step 3: Solve the "inversion" equation for the Hertz potential,

$$
\overline{\bar{\delta}}^{4} \bar{\Psi}^{ \pm}=8 \varrho^{-4} \psi_{4}^{\mathrm{SAS} \pm}
$$

on either sides of $\overline{\mathcal{S}}$, to obtain

$$
\bar{\Psi}^{ \pm}=\sum_{\ell=2}^{\infty} \frac{8(\ell-2)!}{(\ell+2)!} C_{\ell}^{ \pm}\left(r_{0}\right) R_{\ell}^{ \pm}(r)_{+2} Y_{\ell 0}(\theta)
$$

5. Determination of the completion amplitudes:

5.1 Circular equatorial orbits in Kerr (cont'd)

Step 4: Obtain (reconstructed bits of) metric components and $\delta \psi_{2}$:

$$
\begin{aligned}
h_{r r}^{\mathrm{rec} \pm} & =-\operatorname{Re} \frac{1}{\Delta^{2} \bar{\varrho}^{4}} \overline{\mathrm{~g}}_{1}\left(\bar{\varrho}^{2} \bar{\partial}_{2} \bar{\Psi}^{ \pm}\right) \\
h_{\theta \theta}^{\mathrm{rec} \pm} & =-\operatorname{Re} \frac{1}{\bar{\varrho}^{4}} \partial_{r}\left(\bar{\varrho}^{2} \partial_{r} \bar{\Psi}^{ \pm}\right) \\
\delta \psi_{2}^{\mathrm{rec} \pm} & =\frac{1}{4} \partial_{r}^{2}\left(\varrho^{2} \bar{\partial}_{1} \bar{\partial}_{2} \bar{\Psi}^{ \pm}\right)-\frac{\varrho, \theta}{\varrho} \partial_{r}\left[\varrho \partial_{r}\left(\varrho \overline{\bar{\delta}}_{2} \bar{\Psi}^{ \pm}\right)\right]+\frac{3}{2} \varrho, \theta \partial_{r}\left(\varrho_{, \theta} \partial_{r} \bar{\Psi}^{ \pm}\right)
\end{aligned}
$$

Step 5: Construct (reconstructed bits of) gauge-invariant fields:

$$
\mathcal{I}_{n}^{\mathrm{rec} \pm}=\sum_{\ell=2}^{\infty} \sum_{j=0}^{3} \sum_{k=0}^{3} \frac{(\ell-2)!}{(\ell+2)!} f_{n j k}(r, \theta) C_{\ell}^{\mp}\left(r_{0}\right) R_{\ell}^{ \pm(k)}(r)_{2} Y_{\ell 0}^{(j)}(\theta)
$$

Step 5: Obtain jump across $\overline{\mathcal{S}}$; simplify using Wronskian $=\Delta$:

$$
\left[\mathcal{I}_{n}^{\mathrm{rec}}\right]\left(\theta ; r_{0}\right)=\sum_{j=0}^{3} \sum_{i=0}^{2} \sum_{k=0}^{3} h_{n j j k}\left(\theta ; r_{0}\right) \sum_{\ell=2}^{\infty} \Lambda_{\ell k}{ }_{2} Y_{\ell}^{(j)}(\theta)_{2} Y_{\ell}^{(i)}\left(\theta_{0}\right)
$$

where $\Lambda_{\ell k}:=\left\{1, \frac{1}{\ell(\ell+1)}, \frac{1}{(\ell+2)(\ell-1)}, \frac{(\ell-2)!}{(\ell+2)!}\right\}$ respectively for $k=\{0,1,2,3\}$.

5. Determination of the completion amplitudes:

5.1 Circular equatorial orbits in Kerr (cont'd)

Step 6: Evaluate sums over ℓ via term-by-term differentiation of the closure relation

$$
\sum_{\ell=2}^{\infty}{ }_{2} Y_{\ell}(\theta){ }_{2} Y_{\ell}\left(\theta_{0}\right)=(2 \pi)^{-1} \delta\left(\cos \theta-\cos \theta_{0}\right)
$$

Step 7: Obtain (dropping distributions supported on $\theta=\theta_{0}=\pi / 2$)

$$
\begin{aligned}
& {\left[\mathcal{I}_{1}^{\mathrm{rec}}\right]\left(\theta ; r_{0}\right)=-\frac{2\left(r_{0}^{2}+a^{2} \cos ^{2} \theta\right)\left[\left(r_{0}^{2}+5 a^{2}\right) E-3 a L\right]}{3 M \Delta_{0}^{2}},} \\
& {\left[\mathcal{I}_{2}^{\mathrm{rec}}\right]\left(\theta ; r_{0}\right)=+\frac{2\left(r_{0}^{2}+a^{2} \cos ^{2} \theta\right)[6 L-a E(9-\cos 2 \theta)]}{6 a M \sin ^{2} \theta}}
\end{aligned}
$$

5. Determination of the completion amplitudes: 5.1 Circular equatorial orbits in Kerr (cont'd)

Step 8: Write completion piece of the metric perturbation as

$$
h_{\alpha \beta}^{\mathrm{comp} \pm}=\mathcal{E}^{ \pm} \frac{\partial g_{\alpha \beta}^{\mathrm{Kerr}}\left(x^{\mu} ; M, J\right)}{\partial M}+\mathcal{J}^{ \pm} \frac{\partial g_{\alpha \beta}^{\mathrm{Kerr}}\left(x^{\mu} ; M, J\right)}{\partial J}
$$

(where $J=M a$) with amplitudes $\mathcal{E}^{ \pm}, \mathcal{J}^{ \pm}$to be determined.
Step 9: Construct the corresponding contributions to \mathcal{I}_{1} and \mathcal{I}_{2}, and obtain their jumps:

$$
\begin{aligned}
& {\left[\mathcal{I}_{1}^{\text {comp }}\right]\left(\theta ; r_{0}\right)=+\frac{2\left(r_{0}^{2}+a^{2} \cos ^{2} \theta\right)\left[\left(r_{0}^{2}+5 a^{2}\right)[\mathcal{E}]-3 a[\mathcal{J}]\right]}{3 M \Delta_{0}^{2}}} \\
& {\left[\mathcal{I}_{2}^{\text {comp }}\right]\left(\theta ; r_{0}\right)=-\frac{2\left(r_{0}^{2}+a^{2} \cos ^{2} \theta\right)[6[\mathcal{J}]-a[\mathcal{E}](9-\cos 2 \theta)]}{6 a M \sin ^{2} \theta}}
\end{aligned}
$$

where $[\mathcal{E}]:=\mathcal{E}^{+}-\mathcal{E}^{-}$and $[\mathcal{J}]:=\mathcal{J}^{+}-\mathcal{J}^{-}$.

5. Determination of the completion amplitudes:

 5.1 Circular equatorial orbits in Kerr (cont'd)Step 10: The requirement

$$
\left[\mathcal{I}_{n}\right](\theta)=\left[\mathcal{I}_{n}^{\text {rec }}\right](\theta)+\left[\mathcal{I}_{n}^{\text {comp }}\right](\theta) \equiv 0
$$

for $n=1$ and $n=2$, now gives

$$
[\mathcal{E}]=E, \quad[\mathcal{J}]=L .
$$

(If fact, this follows from $\left[\mathcal{I}_{2}\right](\theta) \equiv 0$ alone.)

5. Determination of the completion amplitudes:

5.1 Eccentric equatorial orbits in Kerr

Step 1: Express energy-momentum as superposition of "conserved" partial rings:

$$
\begin{aligned}
T_{\alpha \beta}^{\mathrm{SAS}} & =\frac{\mu u_{\alpha}(r) u_{\beta}(r)}{T_{r} r^{2} \dot{r}(r)} \Theta\left(r-r_{\min }\right) \Theta\left(r_{\max }-r\right) \delta(\cos \theta) \\
& =\frac{\mu}{T_{r}} \int_{r_{\min }}^{r_{\max }} d r_{0}\left[\left(\frac{u_{\alpha}\left(r_{0}\right) u_{\beta}\left(r_{0}\right)}{r_{0}^{2}\left|\dot{r}\left(r_{0}\right)\right|}+\{\dot{r} \rightarrow-\dot{r}\}\right) \delta\left(r-r_{0}\right)+\underline{A_{\alpha \beta}(r) \delta^{\prime}\left(r-r_{0}\right)}\right] \delta(\cos \theta)
\end{aligned}
$$

Step 2:

Correspondingly write source of Teukolsky eq as integral of r_{0}-ring contributions, and

$$
\psi_{4}^{\mathrm{SAS}, \ell}=\int \psi_{4\left(r_{0}\right)}^{\ell} d r_{0}
$$

Introduce corresponding
$\Psi_{\left(r_{0}\right)}^{ \pm},\left(h_{\alpha \beta}^{ \pm}\right)_{\left(r_{0}\right)},\left(\mathcal{I}^{ \pm}\right)_{\left(r_{0}\right)}, \mathcal{E}_{\left(r_{0}\right)}^{ \pm}, \mathcal{J}_{\left(r_{0}\right)}^{ \pm}$, etc.

5. Determination of the completion amplitudes: 5.1 Eccentric equatorial orbits in Kerr

Step 3:
Proceed for each r_{0}-ring as for a circular orbit to calculate $\left[\mathcal{I}_{n}^{\text {rec }}\right]_{\left(r_{0}\right)}$ and $\left[\mathcal{I}_{n}^{\text {comp }}\right]_{\left(r_{0}\right)}$.

Step 4: Impose continuity of the invariants for each r_{0}-ring,

$$
\left[\mathcal{I}_{n}\right]_{\left(r_{0}\right)}(\theta)=\left[\mathcal{I}_{n}^{\text {rec }}\right]_{\left(r_{0}\right)}(\theta)+\left[\mathcal{I}_{n}^{\text {comp }}\right]_{\left(r_{0}\right)}(\theta) \equiv 0
$$

and solve for partial amplitudes $[\mathcal{E}]_{\left(r_{0}\right)}$ and $[\mathcal{L}]_{\left(r_{0}\right)}$.

Step 5: Get full jumps $[\mathcal{E}]$ and $[\mathcal{L}]$ by integrating over all partial rings:

$$
[\mathcal{E}]=\int_{r_{\text {min }}}^{r_{\text {max }}}[\mathcal{E}]_{\left(r_{0}\right)} d r_{0}, \quad[\mathcal{J}]=\int_{r_{\text {min }}}^{r_{\max }}[\mathcal{J}]_{\left(r_{0}\right)} d r_{0}
$$

Summary \& Discussion

- We have confirmed earlier results for circular orbits, and are extending them to eccentric (equatorial) orbits.
- Our method is mathematically rigorous; only assumes that invariant fields constructed from the completed metric perturbation are continuous off the particle.

Summary \& Discussion

- We have confirmed earlier results for circular orbits, and are extending them to eccentric (equatorial) orbits.
- Our method is mathematically rigorous; only assumes that invariant fields constructed from the completed metric perturbation are continuous off the particle.
- Result is extremely simple. Can it follow from a simpler (but equally rigorous) argument?
- For orbits that start at infinity, result follows from simple considerations at infinity (noting completion amplitudes are time-independent).

Summary \& Discussion

- We have confirmed earlier results for circular orbits, and are extending them to eccentric (equatorial) orbits.
- Our method is mathematically rigorous; only assumes that invariant fields constructed from the completed metric perturbation are continuous off the particle.
- Result is extremely simple. Can it follow from a simpler (but equally rigorous) argument?
- For orbits that start at infinity, result follows from simple considerations at infinity (noting completion amplitudes are time-independent).
- To do (1): Extension to generic orbits
- To do (2): "gauge smoothing" of residual discontinuity in metric across $\overline{\mathcal{S}}$.

