Completion of metric reconstruction for a particle orbiting a Kerr black hole

Cesar Merlin (Southampton) Amos Ori (Technion) Maarten van de Meent (Southampton) Adam Pound (Southampton) Leor Barack (Southampton)

1.1 Recent developments

Completion Problem (aka " $\ell = 0, 1$ " problem) occupied Capra community since early 2000s. Must be addressed to take full advantage of 3 recent developments:

- Progress on metric reconstruction from Weyl curvature scalars, for an orbiting particle [Ori (2003); Keidl, Friedman, Shah et al (2007-2012); van de Meent & Shah (2015)]
- Formulation of self-force and motion from a reconstructed metric, with a practical mode-sum formula [Pound, Merlin & LB (2014)]
- Advances in semi-analytic methods for solving the Teukolsky equation, based on the Mano-Suzuki-Takasugi (MST) approach [Hughes; Shah et al; van de Meent & Shah; Bini & Damour; Kavanagh et al;...]

1.2 Progress on metric reconstruction

• Reconstruction in vacuum [Chrzanowski 1975; Cohen & Kegeles 1979 (CCK); Wald 1973, 1978; Stewart 1979; Lousto & Whiting 2002]

Let h_{ab} be a vacuum metric perturbation of Kerr and ψ_4 associated Weyl scalar. Then, given any Ψ satisfying

$$\Box_{\rm Teukolsky}\Psi=0, \qquad D^4\Psi=\psi_4,$$

 h_{ab} may be reproduced ("reconstructed") using

$$h_{ab}^{(\mathrm{rec})} = \mathcal{D}_{CCK}^{(2)} \Psi,$$

to within a gauge perturbation and a linear combination of 4 "trivial" homogeneous solutions:

$$c_1 h_{ab}^{\delta M} + c_2 h_{ab}^{\delta J} + c_3 h_{ab}^{\mathrm{C\,metric}} + c_4 h_{ab}^{\mathrm{KerrNUT}}$$

Completion: the task of determining c_n .

1.2 Progress on metric reconstruction (cont'd)

- In presence of matter sources, CCK procedure fails to yield a valid solution even in vacuum away from sources [LB & Ori 2001; Price & Whiting 2007]
- Reconstruction for bound orbits, with string-like gauge singularities [Ori 2003]
- Reconstruction for circular equatorial orbits, with gauge discontinuity on a sphere [Keidl, Friedman etal (2007-2012)]
- Extension to any bound equatorial orbit [van de Meent & Shah (2015)]

1.3 Self-force from a reconstructed metric [Pound, Merlin & LB (2014)]

Two alternative mode-sum schemes:

$$\mathcal{F}^\pm_lpha = \sum_{\ell=0}^\infty \left[(\mathcal{F}_lpha)^\ell_\pm - (\ell+1/2) \mathcal{A}^\pm_lpha - \mathcal{B}_lpha
ight] - \delta D^\pm_lpha$$

in a local Lorenz deformation of either of the half-string radiation gauges

$$\mathcal{F}_lpha = \sum_{\ell=0}^\infty \left[rac{1}{2}(\mathcal{F}_lpha)_+^\ell + rac{1}{2}(\mathcal{F}_lpha)_-^\ell - \mathcal{B}_lpha
ight]$$

in a no-string radiation gauge

- A^{\pm}_{α} and B_{α} are Lorenz-gauge regularization parameters.
- Values of δD_{α}^{\pm} depend on off-particle extension used to define $(F_{\alpha})_{\pm}^{\ell}$.
- $(F_{\alpha})^{\ell}_{\pm}$ are constructed from the modes of the **completed** perturbations $h^{\pm}_{\alpha\beta}$.

1.4 Completion for a particle source

• Need to determine c^{\pm} in

$$h_{ab}^{(ext{comp})\pm} := c_1^{\pm} h_{ab}^{\delta M} + c_2^{\pm} h_{ab}^{\delta J} + c_3^{\pm} h_{ab}^{ ext{C metric}} + c_4^{\pm} h_{ab}^{ ext{KerrNUT}}$$

- $c_3^{\pm} = 0 = c_4^{\pm}$ from regularity [Keidl, Shah, Friedman, Kim & Price (2010)]
- c₁⁺ and c₂⁺ are readily determined from r → ∞ asymptotics, given total ADM mass and angular-momentum of system.
- So, the task is to determine the pair of constants c_1^- and c_2^- , or, equivalently

$$[\mathcal{E}] := c_1^+ - c_1^-, \qquad [\mathcal{J}] := c_2^+ - c_2^-$$

1.4 Completion for a particle source

• Need to determine c^{\pm} in

$$h_{ab}^{(ext{comp})\pm} := c_1^{\pm} h_{ab}^{\delta M} + c_2^{\pm} h_{ab}^{\delta J} + c_3^{\pm} h_{ab}^{ ext{C}\, ext{metric}} + c_4^{\pm} h_{ab}^{ ext{KerrNUT}}$$

- $c_3^{\pm} = 0 = c_4^{\pm}$ from regularity [Keidl, Shah, Friedman, Kim & Price (2010)]
- c₁⁺ and c₂⁺ are readily determined from r → ∞ asymptotics, given total ADM mass and angular-momentum of system.
- So, the task is to determine the pair of constants c_1^- and c_2^- , or, equivalently

$$[\mathcal{E}] := c_1^+ - c_1^-, \qquad [\mathcal{J}] := c_2^+ - c_2^-$$

Why not just use F_{α}^+ ?

- Calculation of δD^+_{α} is hard and subtle
- Wish to have control over internal perturbation and mass of black hole

• Larry Price (PhD thesis, 2007): Demand that $h_{ab}^{\text{comp}+}$ and $h_{ab}^{\text{comp}-}$ match smoothly on \bar{S} up to a gauge transformation. Makes sense under the assumption that $h_{ab}^{\text{rec}+}$ and $h_{ab}^{\text{rec}-}$ can be matched smoothly (up to gauge). Applied for Schwarzschild (circular orbits) only.

- Larry Price (PhD thesis, 2007): Demand that $h_{ab}^{\text{comp}+}$ and $h_{ab}^{\text{comp}-}$ match smoothly on \bar{S} up to a gauge transformation. Makes sense under the assumption that $h_{ab}^{\text{rec}+}$ and $h_{ab}^{\text{rec}-}$ can be matched smoothly (up to gauge). Applied for Schwarzschild (circular orbits) only.
- Shah, Friedman & Keidl (2012): Fix the Komar mass and AM of (the stationary and axisymmetric piece of) the perturbed spacetime at $r \to \infty$ and on the horizon, assuming $h_{ab}^{\text{rec}\pm}$ have no contribution. Applied for circular orbits in Kerr, where they get the correct answer.

- Larry Price (PhD thesis, 2007): Demand that $h_{ab}^{\text{comp}+}$ and $h_{ab}^{\text{comp}-}$ match smoothly on \bar{S} up to a gauge transformation. Makes sense under the assumption that $h_{ab}^{\text{rec}+}$ and $h_{ab}^{\text{rec}-}$ can be matched smoothly (up to gauge). Applied for Schwarzschild (circular orbits) only.
- Shah, Friedman & Keidl (2012): Fix the Komar mass and AM of (the stationary and axisymmetric piece of) the perturbed spacetime at $r \to \infty$ and on the horizon, assuming $h_{ab}^{\text{rec}\pm}$ have no contribution. Applied for circular orbits in Kerr, where they get the correct answer.
- Dolan & LB (2013), following Abbot & Desser (1982): Quasi-local conserved integrals (requiring only *background* symmetries) may be used to determine mass and AM content of h^{rec±}_{ab}. Can be used to easily fix completion piece in Schwarzschild, but hard to apply in Kerr.

- Larry Price (PhD thesis, 2007): Demand that $h_{ab}^{\text{comp}+}$ and $h_{ab}^{\text{comp}-}$ match smoothly on \bar{S} up to a gauge transformation. Makes sense under the assumption that $h_{ab}^{\text{rec}+}$ and $h_{ab}^{\text{rec}-}$ can be matched smoothly (up to gauge). Applied for Schwarzschild (circular orbits) only.
- Shah, Friedman & Keidl (2012): Fix the Komar mass and AM of (the stationary and axisymmetric piece of) the perturbed spacetime at $r \to \infty$ and on the horizon, assuming $h_{ab}^{\text{rec}\pm}$ have no contribution. Applied for circular orbits in Kerr, where they get the correct answer.
- Dolan & LB (2013), following Abbot & Desser (1982): Quasi-local conserved integrals (requiring only *background* symmetries) may be used to determine mass and AM content of h^{rec±}_{ab}. Can be used to easily fix completion piece in Schwarzschild, but hard to apply in Kerr.
- Sano & Tagoshi (2014): Considered a rotating circular mass ring. Require continuity on \overline{S} of the metric perturbation and of ψ_1, ψ_2, ψ_3 . However, allow for singularities in the equatorial plane in/outside the ring, so uniqueness of completion unclear.

3. Our strategy

Determine $[\mathcal{E}]$ and $[\mathcal{J}]$ by demanding that certain gauge-invariant fields constructed from the completed perturbation are continuous on $\overline{\mathcal{S}}$:

$$\mathcal{I}(h_{ab}^{ ext{rec}+}+h_{ab}^{ ext{comp}+})\Big|_{ar{S}}=\mathcal{I}(h_{ab}^{ ext{rec}-}+h_{ab}^{ ext{comp}-})\Big|_{ar{S}}$$

(Need two such conditions: either two invariants evaluated at a certain θ , or a single invariant evaluated at two values of θ .)

The resulting completed perturbation (unlike h^{rec}) should be a vacuum solution of the linearized EFE anywhere off the particle. But it is not necessarily smooth (or even continuous) across \overline{S} .

Here we do not take on the more ambitious task of "gauge smoothing", which is required for some applications (cf. Maarten van de Meent's talk).

4. Auxiliary gauge-invariant fields

• Introduce a reference gauge, in which $\delta \psi_2 = 0$:

$$\begin{split} \delta\psi_2^{\rm orig} &\to \delta\psi_2^{\rm ref} = \delta\psi_2^{\rm orig} - \xi^\alpha \psi_{2,\alpha}^{(0)} \equiv 0\\ \Rightarrow \quad \xi^r = \frac{{\rm Re}(\varrho^{-4}\delta\psi_2^{\rm orig})}{3M}, \qquad \xi^\theta = \frac{{\rm Im}(\varrho^{-4}\delta\psi_2^{\rm orig})}{3Ma\sin\theta},\\ \text{where } \varrho := -(r - ia\cos\theta)^{-1}. \text{ So reference gauge is determined up to } \xi^t, \xi^\phi. \end{split}$$

4. Auxiliary gauge-invariant fields

• Introduce a reference gauge, in which $\delta \psi_2 = 0$:

$$\begin{split} \delta\psi_2^{\mathrm{orig}} &\to \delta\psi_2^{\mathrm{ref}} = \delta\psi_2^{\mathrm{orig}} - \xi^\alpha \psi_{2,\alpha}^{(0)} \equiv 0\\ \Rightarrow \quad \xi^r = \frac{\mathrm{Re}(\varrho^{-4}\delta\psi_2^{\mathrm{orig}})}{3M}, \qquad \xi^\theta = \frac{\mathrm{Im}(\varrho^{-4}\delta\psi_2^{\mathrm{orig}})}{3Ma\sin\theta},\\ \end{split}$$
 where $\varrho := -(r - ia\cos\theta)^{-1}.$ So reference gauge is determined up to ξ^t, ξ^ϕ .

• The $\{rr, r\theta, \theta\theta\}$ components of the perturbation in the reference gauge,

$$h_{\alpha\beta}^{\mathrm{ref}} = h_{\alpha\beta}^{\mathrm{orig}} - 2\xi_{\alpha,\beta} + 2\Gamma_{\alpha\beta}^{(0)\gamma}\xi_{\gamma},$$

are completely determined from $\{\xi^r, \xi^{\theta}\}$.

So take {*I*₁, *I*₂, *I*₃} := {*h*^{ref}_{rr}, *h*^{ref}_{θθ}, *h*^{ref}_{rθ}} as our invariant fields. Think of each of these as a (3rd-order) differential operator on *h*^{orig}_{αβ}.

4. Auxiliary gauge-invariant fields

• Introduce a reference gauge, in which $\delta \psi_2 = 0$:

$$\begin{split} \delta\psi_2^{\mathrm{orig}} &\to \delta\psi_2^{\mathrm{ref}} = \delta\psi_2^{\mathrm{orig}} - \xi^\alpha \psi_{2,\alpha}^{(0)} \equiv 0\\ \Rightarrow \quad \xi^r = \frac{\mathrm{Re}(\varrho^{-4}\delta\psi_2^{\mathrm{orig}})}{3M}, \qquad \xi^\theta = \frac{\mathrm{Im}(\varrho^{-4}\delta\psi_2^{\mathrm{orig}})}{3Ma\sin\theta},\\ \end{split}$$
 where $\varrho := -(r - ia\cos\theta)^{-1}.$ So reference gauge is determined up to ξ^t, ξ^ϕ .

• The $\{rr, r\theta, \theta\theta\}$ components of the perturbation in the reference gauge,

$$h_{\alpha\beta}^{\mathrm{ref}} = h_{\alpha\beta}^{\mathrm{orig}} - 2\xi_{\alpha,\beta} + 2\Gamma_{\alpha\beta}^{(0)\gamma}\xi_{\gamma},$$

are completely determined from $\{\xi^r, \xi^{\theta}\}$.

- So take {*I*₁, *I*₂, *I*₃} := {*h*^{ref}_{rr}, *h*^{ref}_{θθ}, *h*^{ref}_{rθ}} as our invariant fields. Think of each of these as a (3rd-order) differential operator on *h*^{orig}_{αβ}.
- For a = 0 take instead $\{\mathcal{I}_1, \mathcal{I}_2\} := \left\{h_{rr}^{ref}, \operatorname{Im}(\delta \psi_2^{\operatorname{orig}})\right\}.$

5. Determination of the completion amplitudes: 5.1 Circular equatorial orbits in Kerr

Step 1: Write the Stationary & axisymmetric part of ψ_4 as a sum over harmonics:

$$\psi_4^{\mathrm{SAS}} = \varrho^4 \sum_{\ell=2}^{\infty} R_\ell(\mathbf{r})_{-2} Y_{\ell 0}(\theta),$$

Step 2: Solve the inhomogeneous Teukolsky equation with regular BCs, to obtain

$$R_{\ell}(r;r_0) = C_{\ell}^+(r_0)R_{\ell}^+(r)\theta(r-r_0) + C_{\ell}^-(r_0)R_{\ell}^-(r)\theta(r_0-r) + C_{\ell}^{\delta}(r_0)\delta(r-r_0),$$

where R_{ℓ}^{\pm} are suitable homogeneous solutions, and $C_{\ell}^{\pm} = \sum_{n,j=0}^{2} \alpha_{nj}(r_0) \left. \frac{d^n R_{\ell}^{\mp}}{dr^n} \right|_{r_0} \left. \frac{d^j \,_2 Y_{\ell 0}}{d\theta^j} \right|_{\theta_0}$. **Step 3:** Solve the "inversion" equation for the Hertz potential,

$$\bar{\eth}^4\bar{\Psi}^{\pm} = 8\varrho^{-4}\psi_4^{\mathrm{SAS\pm}},$$

on either sides of $\bar{\mathcal{S}}$, to obtain

$$\bar{\Psi}^{\pm} = \sum_{\ell=2}^{\infty} \frac{8(\ell-2)!}{(\ell+2)!} C_{\ell}^{\pm}(r_0) R_{\ell}^{\pm}(r)_{+2} Y_{\ell 0}(\theta).$$

Capra 19 @ Paris

Completion of metric reconstruction

L. Barack

5. Determination of the completion amplitudes: 5.1 Circular equatorial orbits in Kerr (cont'd)

Step 4: Obtain (reconstructed bits of) metric components and $\delta \psi_2$:

$$\begin{split} h_{rr}^{\text{rec}\pm} &= -\text{Re}\,\frac{1}{\Delta^2\bar{\varrho}^4}\,\bar{\eth}_1\left(\bar{\varrho}^2\bar{\eth}_2\bar{\Psi}^\pm\right),\\ h_{\theta\theta}^{\text{rec}\pm} &= -\text{Re}\,\frac{1}{\bar{\varrho}^4}\partial_r\left(\bar{\varrho}^2\partial_r\bar{\Psi}^\pm\right).\\ \delta\psi_2^{\text{rec}\pm} &= \frac{1}{4}\partial_r^2\left(\varrho^2\bar{\eth}_1\bar{\eth}_2\bar{\Psi}^\pm\right) - \frac{\varrho_{,\theta}}{\varrho}\partial_r\left[\varrho\partial_r\left(\varrho\bar{\eth}_2\bar{\Psi}^\pm\right)\right] + \frac{3}{2}\varrho_{,\theta}\partial_r\left(\varrho_{,\theta}\partial_r\bar{\Psi}^\pm\right). \end{split}$$

Step 5: Construct (reconstructed bits of) gauge-invariant fields:

$$\mathcal{I}_{n}^{\text{rec}\pm} = \sum_{\ell=2}^{\infty} \sum_{j=0}^{3} \sum_{k=0}^{3} \frac{(\ell-2)!}{(\ell+2)!} f_{njk}(r,\theta) C_{\ell}^{\pm}(r_{0}) R_{\ell}^{\pm(k)}(r)_{2} Y_{\ell 0}^{(j)}(\theta)$$

Step 5: Obtain jump across \overline{S} ; simplify using Wronskian= Δ :

$$\begin{split} \left[\mathcal{I}_{n}^{\text{rec}}\right](\theta;r_{0}) &= \sum_{j=0}^{3}\sum_{i=0}^{2}\sum_{k=0}^{3}h_{njik}(\theta;r_{0})\sum_{\ell=2}^{\infty}\Lambda_{\ell k}\,_{2}Y_{\ell}^{(j)}\!(\theta)_{2}Y_{\ell}^{(i)}\!(\theta_{0}), \\ \text{where }\Lambda_{\ell k} &:= \left\{1,\frac{1}{\ell(\ell+1)},\frac{1}{(\ell+2)(\ell-1)},\frac{(\ell-2)!}{(\ell+2)!}\right\} \text{ respectively for } k = \{0,1,2,3\}. \end{split}$$

Capra 19 @ Paris

5. Determination of the completion amplitudes: 5.1 Circular equatorial orbits in Kerr (cont'd)

Step 6: Evaluate sums over ℓ via term-by-term differentiation of the closure relation

$$\sum_{\ell=2}^{\infty} {}_{2}Y_{\ell}(\theta){}_{2}Y_{\ell}(\theta_{0}) = (2\pi)^{-1}\delta(\cos\theta - \cos\theta_{0}),$$

Step 7: Obtain (dropping distributions supported on $\theta = \theta_0 = \pi/2$)

$$\begin{split} [\mathcal{I}_{1}^{\text{rec}}]\left(\theta;r_{0}\right) &= -\frac{2(r_{0}^{2}+a^{2}\cos^{2}\theta)\left[(r_{0}^{2}+5a^{2})\ E\ -3a\ L\ \right]}{3M\Delta_{0}^{2}},\\ [\mathcal{I}_{2}^{\text{rec}}]\left(\theta;r_{0}\right) &= +\frac{2(r_{0}^{2}+a^{2}\cos^{2}\theta)\left[6\ L\ -a\ E\ (9-\cos2\theta)\right]}{6aM\sin^{2}\theta}. \end{split}$$

5. Determination of the completion amplitudes: 5.1 Circular equatorial orbits in Kerr (cont'd)

Step 8: Write completion piece of the metric perturbation as

$$h_{lphaeta}^{ ext{comp}\pm} = \mathcal{E}^{\pm} \, rac{\partial g_{lphaeta}}^{ ext{Kerr}}(x^{\mu};M,J)}{\partial M} + \mathcal{J}^{\pm} \, rac{\partial g_{lphaeta}}^{ ext{Kerr}}(x^{\mu};M,J)}{\partial J}$$

(where J = Ma) with amplitudes \mathcal{E}^{\pm} , \mathcal{J}^{\pm} to be determined.

Step 9: Construct the corresponding contributions to \mathcal{I}_1 and \mathcal{I}_2 , and obtain their jumps:

$$\begin{split} & [\mathcal{I}_{1}^{\text{comp}}](\theta; r_{0}) = + \frac{2(r_{0}^{2} + a^{2}\cos^{2}\theta)\left[(r_{0}^{2} + 5a^{2})[\mathcal{E}] - 3a[\mathcal{J}]\right]}{3M\Delta_{0}^{2}}, \\ & [\mathcal{I}_{2}^{\text{comp}}](\theta; r_{0}) = - \frac{2(r_{0}^{2} + a^{2}\cos^{2}\theta)\left[6[\mathcal{J}] - a[\mathcal{E}](9 - \cos 2\theta)\right]}{6aM\sin^{2}\theta}, \end{split}$$

where $[\mathcal{E}] := \mathcal{E}^+ - \mathcal{E}^-$ and $[\mathcal{J}] := \mathcal{J}^+ - \mathcal{J}^-$.

Determination of the completion amplitudes: 5.1 Circular equatorial orbits in Kerr (cont'd)

Step 10: The requirement

$$\left[\mathcal{I}_{n}\right]\left(\theta\right)=\left[\mathcal{I}_{n}^{\mathrm{rec}}\right]\left(\theta\right)+\left[\mathcal{I}_{n}^{\mathrm{comp}}\right]\left(\theta\right)\equiv0,$$

for n = 1 and n = 2, now gives

$$[\mathcal{E}] = E, \qquad [\mathcal{J}] = L.$$

(If fact, this follows from $[\mathcal{I}_2](\theta) \equiv 0$ alone.)

Determination of the completion amplitudes: 5.1 Eccentric equatorial orbits in Kerr

Step 1: Express energy-momentum as superposition of <u>"conserved"</u> partial rings:

$$T_{\alpha\beta}^{\text{SAS}} = \frac{\mu u_{\alpha}(r) u_{\beta}(r)}{T_{r} r^{2} \dot{r}(r)} \Theta(r - r_{\min}) \Theta(r_{\max} - r) \delta(\cos \theta)$$

= $\frac{\mu}{T_{r}} \int_{r_{\min}}^{r_{\max}} dr_{0} \left[\left(\frac{u_{\alpha}(r_{0}) u_{\beta}(r_{0})}{r_{0}^{2} |\dot{r}(r_{0})|} + \{\dot{r} \rightarrow -\dot{r}\} \right) \delta(r - r_{0}) + \underline{A_{\alpha\beta}(r)} \delta'(r - r_{0}) \right] \delta(\cos \theta)$

Step 2:

Correspondingly write source of Teukolsky eq as integral of r_0 -ring contributions, and

$$\psi_4^{\mathrm{SAS},\ell} = \int \psi_{4(r_0)}^\ell dr_0.$$

Introduce corresponding

$$\Psi^{\pm}_{(r_0)}$$
, $(h^{\pm}_{lphaeta})_{(r_0)}$, $(\mathcal{I}^{\pm})_{(r_0)}$, $\mathcal{E}^{\pm}_{(r_0)}$, $\mathcal{J}^{\pm}_{(r_0)}$, etc.

5. Determination of the completion amplitudes: 5.1 Eccentric equatorial orbits in Kerr

Step 3:

Proceed for each r_0 -ring as for a circular orbit to calculate $[\mathcal{I}_n^{\text{rec}}]_{(r_0)}$ and $[\mathcal{I}_n^{\text{comp}}]_{(r_0)}$.

Step 4: Impose continuity of the invariants for each ro-ring,

$$\left[\mathcal{I}_{n}\right]_{(r_{0})}(\theta)=\left[\mathcal{I}_{n}^{\mathrm{rec}}\right]_{(r_{0})}(\theta)+\left[\mathcal{I}_{n}^{\mathrm{comp}}\right]_{(r_{0})}(\theta)\equiv0,$$

and solve for partial amplitudes $[\mathcal{E}]_{(r_0)}$ and $[\mathcal{L}]_{(r_0)}$.

Step 5: Get full jumps $[\mathcal{E}]$ and $[\mathcal{L}]$ by integrating over all partial rings:

$$[\mathcal{E}] = \int_{r_{\min}}^{r_{\max}} [\mathcal{E}]_{(r_0)} dr_0, \qquad [\mathcal{J}] = \int_{r_{\min}}^{r_{\max}} [\mathcal{J}]_{(r_0)} dr_0$$

Summary & Discussion

- We have confirmed earlier results for circular orbits, and are extending them to eccentric (equatorial) orbits.
- Our method is mathematically rigorous; only assumes that invariant fields constructed from the completed metric perturbation are continuous off the particle.

Summary & Discussion

- We have confirmed earlier results for circular orbits, and are extending them to eccentric (equatorial) orbits.
- Our method is mathematically rigorous; only assumes that invariant fields constructed from the completed metric perturbation are continuous off the particle.
- Result is extremely simple. Can it follow from a simpler (but equally rigorous) argument?
- For orbits that start at infinity, result follows from simple considerations at infinity (noting completion amplitudes are time-independent).

Summary & Discussion

- We have confirmed earlier results for circular orbits, and are extending them to eccentric (equatorial) orbits.
- Our method is mathematically rigorous; only assumes that invariant fields constructed from the completed metric perturbation are continuous off the particle.
- Result is extremely simple. Can it follow from a simpler (but equally rigorous) argument?
- For orbits that start at infinity, result follows from simple considerations at infinity (noting completion amplitudes are time-independent).
- To do (1): Extension to generic orbits
- To do (2): "gauge smoothing" of residual discontinuity in metric across \bar{S} .