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1. Motivation & statement of the problem
1.1 Recent developments

Completion Problem (aka “` = 0, 1” problem) occupied Capra community since

early 2000s. Must be addressed to take full advantage of 3 recent developments:

Progress on metric reconstruction from Weyl curvature scalars, for an
orbiting particle [Ori (2003); Keidl, Friedman, Shah et al (2007-2012);

van de Meent & Shah (2015)]

Formulation of self-force and motion from a reconstructed metric,
with a practical mode-sum formula [Pound, Merlin & LB (2014)]

Advances in semi-analytic methods for solving the Teukolsky equation,
based on the Mano-Suzuki-Takasugi (MST) approach [Hughes; Shah et al;

van de Meent & Shah; Bini & Damour; Kavanagh et al;. . . ]
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1. Motivation & statement of the problem
1.2 Progress on metric reconstruction

Reconstruction in vacuum [Chrzanowski 1975; Cohen & Kegeles 1979 (CCK);

Wald 1973, 1978; Stewart 1979; Lousto & Whiting 2002]

Let hab be a vacuum metric perturbation of Kerr and ψ4 associated Weyl
scalar. Then, given any Ψ satisfying

�TeukolskyΨ = 0, D4Ψ = ψ4,

hab may be reproduced (“reconstructed”) using

h
(rec)
ab = D(2)

CCKΨ,

to within a gauge perturbation and a linear combination of 4 “trivial”
homogeneous solutions:

c1h
δM
ab + c2h

δJ
ab + c3h

Cmetric
ab + c4h

KerrNUT
ab .

Completion: the task of determining cn.
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1. Motivation & statement of the problem
1.2 Progress on metric reconstruction (cont’d)

In presence of matter sources, CCK
procedure fails to yield a valid solution
even in vacuum away from sources
[LB & Ori 2001; Price & Whiting 2007]

Reconstruction for bound orbits, with
string-like gauge singularities [Ori 2003]

Reconstruction for circular equatorial
orbits, with gauge discontinuity on a
sphere [Keidl, Friedman etal (2007-2012)]

Extension to any bound equatorial orbit
[van de Meent & Shah (2015)]

h
+

h


Ori’s “half-string” solutions

r = rp(t)

h
+h

gauge 
discontinuity

Friedman’s “no-string” solution
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1. Motivation & statement of the problem
1.3 Self-force from a reconstructed metric [Pound, Merlin & LB (2014)]

Two alternative mode-sum schemes:

F±α =
∞∑
`=0

[
(Fα)`± − (`+ 1/2)A±α − Bα

]
− δD±α

in a local Lorenz deformation of either of the half-string radiation gauges

Fα =
∞∑
`=0

[
1

2
(Fα)`+ +

1

2
(Fα)`− − Bα

]
in a no-string radiation gauge

A±α and Bα are Lorenz-gauge regularization parameters.

Values of δD±α depend on off-particle extension used to define (Fα)`±.

(Fα)`± are constructed from the modes of the completed perturbations h±αβ .
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1. Motivation & statement of the problem
1.4 Completion for a particle source

Need to determine c± in

h
(comp)±
ab := c±1 hδMab + c±2 hδJab + c±3 hCmetric

ab + c±4 hKerrNUT
ab

c±3 = 0 = c±4 from regularity [Keidl, Shah, Friedman, Kim & Price (2010)]

c+
1 and c+

2 are readily determined from r →∞ asymptotics, given total
ADM mass and angular-momentum of system.

So, the task is to determine the pair of constants c−1 and c−2 , or, equivalently

[E ] := c+
1 − c−1 , [J ] := c+

2 − c−2

Why not just use F+
α ?

Calculation of δD+
α is hard and subtle

Wish to have control over internal perturbation and mass of black hole
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2. Earlier attempts at the problem

Larry Price (PhD thesis, 2007): Demand that hcomp+
ab and hcomp−

ab match
smoothly on S̄ up to a gauge transformation. Makes sense under the
assumption that hrec+

ab and hrec−ab can be matched smoothly (up to gauge).
Applied for Schwarzschild (circular orbits) only.

Shah, Friedman & Keidl (2012): Fix the Komar mass and AM of (the
stationary and axisymmetric piece of) the perturbed spacetime at r →∞
and on the horizon, assuming hrec±ab have no contribution. Applied for
circular orbits in Kerr, where they get the correct answer.

Dolan & LB (2013), following Abbot & Desser (1982): Quasi-local
conserved integrals (requiring only background symmetries) may be used to
determine mass and AM content of hrec±ab . Can be used to easily fix
completion piece in Schwarzschild, but hard to apply in Kerr.

Sano & Tagoshi (2014): Considered a rotating circular mass ring. Require
continuity on S̄ of the metric perturbation and of ψ1, ψ2, ψ3. However, allow
for singularities in the equatorial plane in/outside the ring, so uniqueness of
completion unclear.
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3. Our strategy

Determine [E ] and [J ] by demanding that certain gauge-invariant fields
constructed from the completed perturbation are continuous on S̄:

I(hrec+
ab + hcomp+

ab )
∣∣∣
S̄

= I(hrec−ab + hcomp−
ab )

∣∣∣
S̄

(Need two such conditions: either two invariants evaluated at a certain θ, or a single

invariant evaluated at two values of θ.)

The resulting completed perturbation (unlike hrec) should be a vacuum
solution of the linearized EFE anywhere off the particle. But it is not
necessarily smooth (or even continuous) across S̄.

Here we do not take on the more ambitious task of “gauge smoothing”,
which is required for some applications (cf. Maarten van de Meent’s talk).
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4. Auxiliary gauge-invariant fields

Introduce a reference gauge, in which δψ2 = 0:

δψorig
2 → δψref

2 = δψorig
2 − ξαψ(0)

2,α ≡ 0

⇒ ξr =
Re(%−4δψorig

2 )

3M
, ξθ =

Im(%−4δψorig
2 )

3Ma sin θ
,

where % := −(r − ia cos θ)−1. So reference gauge is determined up to ξt , ξφ.

The {rr , rθ, θθ} components of the perturbation in the reference gauge,

href
αβ = horig

αβ − 2ξα,β + 2Γ
(0)γ
αβ ξγ ,

are completely determined from {ξr , ξθ}.

So take {I1, I2, I3} :=
{
href
rr , h

ref
θθ , h

ref
rθ

}
as our invariant fields. Think of each of

these as a (3rd-order) differential operator on horig
αβ .

For a = 0 take instead {I1, I2} :=
{
href
rr , Im(δψorig

2 )
}

.
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5. Determination of the completion amplitudes:
5.1 Circular equatorial orbits in Kerr

Step 1: Write the Stationary & axisymmetric part of ψ4 as a sum over harmonics:

ψSAS
4 = %4

∞∑
`=2

R`(r)−2Y`0(θ),

Step 2: Solve the inhomogeneous Teukolsky equation with regular BCs, to obtain

R`(r ; r0) = C+
` (r0)R+

` (r)θ(r − r0) + C−` (r0)R−` (r)θ(r0 − r) + C δ` (r0)δ(r − r0),

where R±` are suitable homogeneous solutions, and C±` =
∑2

n,j=0 αnj(r0)
dnR∓

`
drn

∣∣∣∣
r0

d j 2Y`0
dθj

∣∣∣
θ0

.

Step 3: Solve the “inversion” equation for the Hertz potential,

ð̄4Ψ̄± = 8%−4ψSAS±
4 ,

on either sides of S̄, to obtain

Ψ̄± =
∞∑
`=2

8(`− 2)!

(`+ 2)!
C±` (r0)R±` (r)+2Y`0(θ).
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5. Determination of the completion amplitudes:
5.1 Circular equatorial orbits in Kerr (cont’d)

Step 4: Obtain (reconstructed bits of) metric components and δψ2:

hrec±
rr = −Re

1

∆2%̄4
ð̄1

(
%̄2ð̄2Ψ̄±

)
,

hrec±
θθ = −Re

1

%̄4
∂r
(
%̄2∂r Ψ̄

±
)
.

δψrec±
2 =

1

4
∂2
r

(
%2ð̄1ð̄2Ψ̄±

)
− %,θ

%
∂r
[
%∂r
(
% ð̄2Ψ̄±

)]
+

3

2
%,θ∂r

(
%,θ∂r Ψ̄

±) .
Step 5: Construct (reconstructed bits of) gauge-invariant fields:

Irec±n =
∞∑
`=2

3∑
j=0

3∑
k=0

(`− 2)!

(`+ 2)!
fnjk(r , θ)C∓` (r0)R

±(k)
` (r)2Y

(j)
`0 (θ)

Step 5: Obtain jump across S̄; simplify using Wronskian=∆:

[Irecn ] (θ; r0) =
3∑

j=0

2∑
i=0

3∑
k=0

hnjik(θ; r0)
∞∑
`=2

Λ`k 2Y
(j)
` (θ)2Y

(i)
` (θ0),

where Λ`k :=
{

1, 1
`(`+1)

, 1
(`+2)(`−1)

, (`−2)!
(`+2)!

}
respectively for k = {0, 1, 2, 3}.
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5. Determination of the completion amplitudes:
5.1 Circular equatorial orbits in Kerr (cont’d)

Step 6: Evaluate sums over ` via term-by-term differentiation of the closure relation

∞∑
`=2

2Y (̀θ)2Y (̀θ0) = (2π)−1δ(cos θ − cos θ0),

Step 7: Obtain (dropping distributions supported on θ = θ0 = π/2)

[Irec1 ] (θ; r0) = −
2(r 2

0 + a2 cos2 θ)
[
(r 2

0 + 5a2) E − 3a L
]

3M∆2
0

,

[Irec2 ] (θ; r0) = +
2(r 2

0 + a2 cos2 θ) [6 L − a E (9− cos 2θ)]

6aM sin2 θ
.

Capra 19 @ Paris ()Completion of metric reconstruction L. Barack



5. Determination of the completion amplitudes:
5.1 Circular equatorial orbits in Kerr (cont’d)

Step 8: Write completion piece of the metric perturbation as

hcomp±
αβ = E±

∂gKerr
αβ (xµ;M, J)

∂M
+ J±

∂gKerr
αβ (xµ;M, J)

∂J

(where J = Ma) with amplitudes E±, J± to be determined.

Step 9: Construct the corresponding contributions to I1 and I2, and obtain their jumps:

[Icomp
1 ] (θ; r0) = +

2(r 2
0 + a2 cos2 θ)

[
(r 2

0 + 5a2)[E]− 3a[J ]
]

3M∆2
0

,

[Icomp
2 ] (θ; r0) = −2(r 2

0 + a2 cos2 θ) [6[J ]− a[E](9− cos 2θ)]

6aM sin2 θ
,

where [E] := E+ − E− and [J ] := J + − J−.

Capra 19 @ Paris ()Completion of metric reconstruction L. Barack



5. Determination of the completion amplitudes:
5.1 Circular equatorial orbits in Kerr (cont’d)

Step 10: The requirement

[In] (θ) = [Irecn ] (θ) + [Icomp
n ] (θ) ≡ 0,

for n = 1 and n = 2, now gives

[E] = E , [J ] = L.

(If fact, this follows from [I2] (θ) ≡ 0 alone.)
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5. Determination of the completion amplitudes:
5.1 Eccentric equatorial orbits in Kerr

Step 1: Express energy-momentum as superposition of “conserved” partial rings:

TSAS
αβ =

µuα(r)uβ(r)

Tr r 2 ṙ(r)
Θ(r − rmin)Θ(rmax − r)δ(cos θ)

=
µ

Tr

∫ rmax

rmin

dr0

[(
uα(r0)uβ(r0)

r 2
0 |ṙ(r0)| + {ṙ → −ṙ}

)
δ(r − r0) + Aαβ(r)δ′(r − r0)

]
δ(cos θ)

Step 2:
Correspondingly write source of Teukolsky
eq as integral of r0-ring contributions, and

ψSAS,`
4 =

∫
ψ`4(r0)dr0.

Introduce corresponding

Ψ±(r0), (h±αβ)(r0), (I±)(r0), E±(r0), J
±

(r0), etc. “r0 ring”

rmax rmin

r = r0

(h
(r0)(h

r
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5. Determination of the completion amplitudes:
5.1 Eccentric equatorial orbits in Kerr

Step 3:
Proceed for each r0-ring as for a circular orbit to calculate [Irecn ](r0) and [Icomp

n ](r0).

Step 4: Impose continuity of the invariants for each r0-ring,

[In](r0) (θ) = [Irecn ](r0) (θ) + [Icomp
n ](r0) (θ) ≡ 0,

and solve for partial amplitudes [E](r0) and [L](r0).

Step 5: Get full jumps [E] and [L] by integrating over all partial rings:

[E] =

∫ rmax

rmin

[E](r0)dr0, [J ] =

∫ rmax

rmin

[J ](r0)dr0
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Summary & Discussion

We have confirmed earlier results for circular orbits, and are extending them
to eccentric (equatorial) orbits.

Our method is mathematically rigorous; only assumes that invariant fields
constructed from the completed metric perturbation are continuous off the
particle.

Result is extremely simple. Can it follow from a simpler (but equally
rigorous) argument?

For orbits that start at infinity, result follows from simple considerations at
infinity (noting completion amplitudes are time-independent).

To do (1): Extension to generic orbits

To do (2): “gauge smoothing” of residual discontinuity in metric across S̄.
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