Self-force corrections to spin precession for eccentric orbits in Schwarzschild spacetime (again)

Sarp Akcay (University College Dublin)

Eccentric spin precession (again)

Numerical Results for $\Delta \psi(e = 0.1)$

p	$\Delta\psi$	$\lim_{e\to 0}\Delta\psi$	$(\Delta \psi - \lim_{e \to 0} \Delta \psi) / e^2$
10	$-5.0374746183 \times 10^{-2}$	-5.06715×10^{-2}	2.96711×10^{-2}
20	$-4.105502714 \times 10^{-2}$	-4.12414×10^{-2}	1.8634×10^{-2}
30	$-2.97664644 \times 10^{-2}$	-2.99044×10^{-2}	-1.3792×10^{-2}
40	$-2.309158147\times10^{-2}$	-2.32001×10^{-2}	1.085×10^{-2}
50	$-1.880823903\times 10^{-2}$	$-1.88976 imes 10^{-2}$	$8.93 imes 10^{-3}$
60	$-1.58482057 \times 10^{-2}$	-1.59242×10^{-2}	7.595×10^{-3}
70	$-1.3686455636\times 10^{-2}$	-1.37523×10^{-2}	6.588×10^{-3}
80	$-1.204035626 \times 10^{-2}$	-1.20966×10^{-2}	5.826×10^{-3}
90	$-1.074624358 \times 10^{-2}$	-1.07983×10^{-2}	5.204×10^{-3}
100	$-9.702092699 \times 10^{-3}$	-9.74941×10^{-3}	4.732×10^{-3}
110	$-8.84229541 \times 10^{-3}$	-8.88571×10^{-3}	4.341×10^{-3}
120	$-8.122988585 \times 10^{-3}$	$-8.16224 imes 10^{-3}$	3.925×10^{-3}
130	$-7.511573415 \times 10^{-3}$	-7.54748×10^{-3}	$3.59 imes 10^{-3}$
140	$-6.985103217 imes 10^{-3}$	$-7.01869 imes 10^{-3}$	3.359×10^{-3}
150	$-6.526467808 \times 10^{-3}$	-6.55905×10^{-3}	3.258×10^{-3}

イロト イポト イヨト イヨ

Numerical Results for $\Delta \psi(e = 0.1)$

p	$\Delta\psi$	$\lim_{e\to 0}\Delta\psi$	($\Delta\psi - \lim_{e o 0} \Delta\psi)/e^2$
10	$-5.0374746183 \times 10^{-2}$	-5.06715×10^{-2}	2.96711×10^{-2}
20	$-4.105502714\times10^{-2}$	-4.12414×10^{-2}	1.8634×10^{-2}
30	$-2.97664644 \times 10^{-2}$	-2.99044×10^{-2}	1.3792×10^{-2}
40	$-2.309158147 \times 10^{-2}$	-2.32001×10^{-2}	1.085×10^{-2}
50	$-1.880823903\times 10^{-2}$	-1.88976×10^{-2}	$8.93 imes 10^{-3}$
60	$-1.58482057 \times 10^{-2}$	-1.5242×10^{-2}	7.595×10^{-3}
70	$-1.3686455636 \times 10^{-2}$	-1.37523×10^{-2}	6.588×10^{-3}
80	$-1.204035626 \times 10^{-2}$	-120966×10^{-2}	5.826×10^{-3}
90	$-1.074624358 \times 10^{-2}$	-1.07983×10^{-2}	5.204×10^{-3}
100	$-9.702092699 \times 10^{\circ}$	-9.74941×10^{-3}	4.732×10^{-3}
110	$-8.84229541 \times 10^{-3}$	-8.88571×10^{-3}	4.341×10^{-3}
120	$-8.122988585 \times 10^{-3}$	$-8.16224 imes 10^{-3}$	3.925×10^{-3}
130	$-7.511573415\times10^{-3}$	$-7.54748 imes 10^{-3}$	$3.59 imes 10^{-3}$
140	$-6.985103217\times10^{-3}$	$-7.01869 imes 10^{-3}$	3.359×10^{-3}
150	$-6.526467808 \times 10^{-3}$	-6.55905×10^{-3}	3.258×10^{-3}

イロト イポト イヨト イヨ

and
$$\Delta \psi - \lim_{e \to 0} \Delta \psi = \frac{1}{2} \frac{e^2}{p}$$

イロト イボト イヨト イヨト

and
$$\Delta \psi - \lim_{e \to 0} \Delta \psi = \frac{1}{2} \frac{e^2}{p}$$

Sarp Akcay (University College Dublin)

Eccentric spin precession (again)

19th Capra Meeting 4 / 14

Sarp Akcay (University College Dublin)

Eccentric spin precession (again)

Dissipation **OFF**

< □ > < 同 > < 回 > < 回 > < 回 >

э

5 / 14

Dissipation $OFF \mapsto Bound orbit$

A D N A B N A B N A B N

 $\mathsf{Dissipation}\; \overset{\mathsf{OFF}}{\mathsf{OFF}} \;\; \mapsto \; \mathsf{Bound}\; \mathsf{orbit}$

Associate orbits: $z^{\alpha}(\tau) \leftrightarrow \overline{z}^{\alpha}(\overline{\tau})$ with $\{p, e, \chi\}$ fixed

Dissipation $OFF \mapsto Bound orbit$ Associate orbits: $z^{\alpha}(\tau) \leftrightarrow \bar{z}^{\alpha}(\bar{\tau})$ with $\{p, e, \chi\}$ fixed $\delta X \equiv X(p, e, \chi) - \bar{X}(p, e, \chi) = \mathcal{O}(\mu)$ Define

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dissipation OFF \mapsto Bound orbit Associate orbits: $z^{\alpha}(\tau) \leftrightarrow \bar{z}^{\alpha}(\bar{\tau})$ with $\{p, e, \chi\}$ fixed Define $\delta X \equiv X(p, e, \chi) - \bar{X}(p, e, \chi) = \mathcal{O}(\mu)$ $\Rightarrow \delta\{p, e, \chi, r(\chi)\} = 0$

- 4 回 ト 4 三 ト 4 三 ト

Dissipation OFF \mapsto Bound orbit Associate orbits: $z^{\alpha}(\tau) \leftrightarrow \bar{z}^{\alpha}(\bar{\tau})$ with $\{p, e, \chi\}$ fixed Define $\delta X \equiv X(p, e, \chi) - \bar{X}(p, e, \chi) = \mathcal{O}(\mu)$ $\Rightarrow \delta\{p, e, \chi, r(\chi)\} = 0$

Gauge invariance: "What is required ... is a gauge-invariant relation, that expresses a nontrivial gauge-invariant quantity encoding the $\mathcal{O}(\mu)$ effect as a function of two other gauge-invariant quantities parametrizing the perturbed orbit" (Barack & Sago 2011)

イロト イポト イヨト イヨト

Dissipation OFF \mapsto Bound orbit Associate orbits: $z^{\alpha}(\tau) \leftrightarrow \bar{z}^{\alpha}(\bar{\tau})$ with $\{p, e, \chi\}$ fixed Define $\delta X \equiv X(p, e, \chi) - \bar{X}(p, e, \chi) = \mathcal{O}(\mu)$ $\Rightarrow \delta\{p, e, \chi, r(\chi)\} = 0$

Gauge invariance: "What is required ... is a gauge-invariant relation, that expresses a nontrivial gauge-invariant quantity encoding the $\mathcal{O}(\mu)$ effect as a function of two other gauge-invariant quantities parametrizing the perturbed orbit"(Barack & Sago 2011)

$$\Delta \psi \equiv \psi(\Omega_r, \Omega_\phi, \mu) - \psi(\Omega_r, \Omega_\phi, 0)$$
$$= \delta \psi - \frac{\partial \bar{\psi}}{\partial \Omega_r} \delta \hat{\Omega}_r - \frac{\partial \bar{\psi}}{\partial \Omega_\phi} \delta \hat{\Omega}_\phi$$
(1)

Sarp Akcay (University College Dublin)

イロト イポト イヨト イヨト

Dissipation OFF \mapsto Bound orbit Associate orbits: $z^{\alpha}(\tau) \leftrightarrow \bar{z}^{\alpha}(\bar{\tau})$ with $\{p, e, \chi\}$ fixed Define $\delta X \equiv X(p, e, \chi) - \bar{X}(p, e, \chi) = \mathcal{O}(\mu)$ $\Rightarrow \delta\{p, e, \chi, r(\chi)\} = 0$

Gauge invariance: "What is required ... is a gauge-invariant relation, that expresses a nontrivial gauge-invariant quantity encoding the $\mathcal{O}(\mu)$ effect as a function of two other gauge-invariant quantities parametrizing the perturbed orbit"(Barack & Sago 2011)

$$\Delta \psi \equiv \psi(\Omega_r, \Omega_{\phi}, \mu) - \psi(\Omega_r, \Omega_{\phi}, 0)$$
$$= \delta \psi - \frac{\partial \bar{\psi}}{\partial \Omega_r} \delta \hat{\Omega}_r - \frac{\partial \bar{\psi}}{\partial \Omega_{\phi}} \delta \hat{\Omega}_{\phi}$$
(1)

 ψ is the accumulated precession per angle between two frames.

Sarp Akcay (University College Dublin)

Eccentric spin precession (again)

TWO frames

3

A D N A B N A B N A B N

TWO frames

- //-transported tetrad: $\dot{\lambda}_i^{\alpha} = 0 \quad \{u^{\alpha}, \lambda_1^{\alpha}, \lambda_2^{\alpha} \propto \hat{\theta}, \lambda_3^{\alpha}\}$
- **2** Marck's tetrad (Marck 1983): $\{u^{\alpha}, e_{1}^{\alpha}, e_{2}^{\alpha} \propto \hat{\theta}, e_{3}^{\alpha}\}$

< □ > < 同 > < 回 > < Ξ > < Ξ

TWO frames

- //-transported tetrad: $\dot{\lambda}_i^{\alpha} = 0 \quad \{u^{\alpha}, \lambda_1^{\alpha}, \lambda_2^{\alpha} \propto \hat{\theta}, \lambda_3^{\alpha}\}$
- **2** Marck's tetrad (Marck 1983): $\{u^{\alpha}, e_{1}^{\alpha}, e_{2}^{\alpha} \propto \hat{\theta}, e_{3}^{\alpha}\}$

Rotation in the 1-3 plane by Ψ

$$\begin{pmatrix} \lambda_1^{\alpha} \\ \lambda_3^{\alpha} \end{pmatrix} = \begin{pmatrix} \cos \Psi & -\sin \Psi \\ \sin \Psi & \cos \Psi \end{pmatrix} \begin{pmatrix} e_1^{\alpha} \\ e_3^{\alpha} \end{pmatrix}$$
Using $\dot{\lambda}_1 = \dot{\lambda}_3 = 0$ we get $\dot{\Psi} = \boxed{e_{3\alpha} \dot{e}_1^{\alpha} = -e_{1\alpha} \dot{e}_3^{\alpha}}$

TWO frames

μ^α, λ₁^α, λ₂^α ∝ θ̂, λ₃^α

 Marck's tetrad (Marck 1983): {u^α, λ₁^α, λ₂^α ∝ θ̂, λ₃^α

Rotation in the 1-3 plane by Ψ

$$\begin{pmatrix} \lambda_1^{\alpha} \\ \lambda_3^{\alpha} \end{pmatrix} = \begin{pmatrix} \cos \Psi & -\sin \Psi \\ \sin \Psi & \cos \Psi \end{pmatrix} \begin{pmatrix} e_1^{\alpha} \\ e_3^{\alpha} \end{pmatrix}$$

Using $\dot{\lambda}_1 = \dot{\lambda}_3 = 0$ we get $\dot{\Psi} = \boxed{e_{3\alpha} \dot{e}_1^{\alpha} = -e_{1\alpha} \dot{e}_3^{\alpha}}$

Consistent with $u^{\gamma}
abla_{\gamma} (e_{3 lpha} e_1^{lpha}) = 0$ since $e_{3 lpha} e_1^{lpha} = 0$

TWO frames

- //-transported tetrad: $\dot{\lambda}_i^{\alpha} = 0 \quad \{u^{\alpha}, \lambda_1^{\alpha}, \lambda_2^{\alpha} \propto \hat{\theta}, \lambda_3^{\alpha}\}$
- **2** Marck's tetrad (Marck 1983): $\{u^{\alpha}, e_1^{\alpha}, e_2^{\alpha} \propto \hat{\theta}, e_3^{\alpha}\}$

Rotation in the 1-3 plane by Ψ

$$\begin{pmatrix} \lambda_1^{\alpha} \\ \lambda_3^{\alpha} \end{pmatrix} = \begin{pmatrix} \cos \Psi & -\sin \Psi \\ \sin \Psi & \cos \Psi \end{pmatrix} \begin{pmatrix} e_1^{\alpha} \\ e_3^{\alpha} \end{pmatrix}$$

Using $\dot{\lambda}_1 = \dot{\lambda}_3 = 0$ we get $\dot{\Psi} = \begin{bmatrix} e_{3\alpha}\dot{e}_1^{\alpha} = -e_{1\alpha}\dot{e}_3^{\alpha} \end{bmatrix}$ Consistent with $u^{\gamma}\nabla_{\gamma}(e_{3\alpha}e_1^{\alpha}) = 0$ since $e_{3\alpha}e_1^{\alpha} = 0$

Thus

$$\delta \dot{\Psi} = \delta \left(g_{\alpha\beta} e_3^\beta u^\gamma \nabla_\gamma e_1^\alpha \right) = -\delta \left(g_{\alpha\beta} e_1^\beta u^\gamma \nabla_\gamma e_3^\alpha \right)$$

A 同 ト A 三 ト A

 ψ is precession per angle defined by

(日) (四) (日) (日) (日)

 ψ is precession per angle defined by $\psi = 1 - \frac{\Psi}{\Phi}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 ψ is precession per angle defined by $\psi = 1 - \frac{\Psi}{\Phi}$

$$\delta\psi = -\frac{\bar{\Psi}}{\bar{\Phi}}\left(\frac{\delta\Psi}{\bar{\Psi}} - \frac{\delta\Phi}{\bar{\Phi}}\right)$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

 ψ is precession per angle defined by $\psi = 1 - \frac{\Psi}{\Phi}$

$$\delta\psi = -\frac{\bar{\Psi}}{\bar{\Phi}}\left(\frac{\delta\Psi}{\bar{\Psi}} - \frac{\delta\Phi}{\bar{\Phi}}\right)$$

where

$$\delta \Psi = \int_{0}^{2\pi} \frac{d\bar{\Psi}}{d\chi} \left(\frac{\delta \dot{\Psi}}{\bar{\Psi}} - \frac{\delta \dot{R}}{\bar{u}^{r}} \right) d\chi$$

$$\delta \Phi = \int_{0}^{2\pi} \frac{d\bar{\Phi}}{d\chi} \left(\frac{\delta L}{L_{0}} - \frac{\delta \dot{R}}{\bar{u}^{r}} \right) d\chi$$

 $\delta\Phi$: Barack & Sago 2011

Sarp Akcay (University College Dublin)

A (10) × A (10) × A (10)

 ψ is precession per angle defined by $\psi = 1 - \frac{\Psi}{\Phi}$

$$\delta\psi = -\frac{\bar{\Psi}}{\bar{\Phi}}\left(\frac{\delta\Psi}{\bar{\Psi}} - \frac{\delta\Phi}{\bar{\Phi}}\right)$$

where

$$\begin{split} \delta\Psi &= \int_{0}^{2\pi} \frac{d\bar{\Psi}}{d\chi} \left(\frac{\delta \dot{\Psi}}{\bar{\Psi}} - \frac{\delta \dot{R}}{\bar{u}^{\tau}} \right) d\chi \\ \delta\Phi &= \int_{0}^{2\pi} \frac{d\bar{\Phi}}{d\chi} \left(\frac{\delta L}{L_{0}} - \frac{\delta \dot{R}}{\bar{u}^{\tau}} \right) d\chi \end{split}$$
 Insert into Eqs. (1), (2)

 $\delta\Phi$: Barack & Sago 2011

Sarp Akcay (University College Dublin)

(4) (日本)

 ψ is precession per angle defined by $\psi = 1 - \frac{\Psi}{\Phi}$

$$\delta\psi = -\frac{\bar{\Psi}}{\bar{\Phi}}\left(\frac{\delta\Psi}{\bar{\Psi}} - \frac{\delta\Phi}{\bar{\Phi}}\right)$$

where

$$\delta \Psi = \int_{0}^{2\pi} \frac{d\bar{\Psi}}{d\chi} \left(\frac{\delta \dot{\Psi}}{\bar{\Psi}} - \frac{\delta \dot{R}}{\bar{u}^{r}} \right) d\chi$$

$$\delta \Phi = \int_{0}^{2\pi} \frac{d\bar{\Phi}}{d\chi} \left(\frac{\delta L}{L_{0}} - \frac{\delta \dot{R}}{\bar{u}^{r}} \right) d\chi$$
Insert into Eqs. (1), (2)

 $\delta\Phi$: Barack & Sago 2011

$$\Delta \psi = \delta \psi - \frac{\partial \bar{\psi}}{\partial \Omega_r} \delta \hat{\Omega}_r - \frac{\partial \bar{\psi}}{\partial \Omega_\phi} \delta \hat{\Omega}_\phi \tag{1}$$

Sarp Akcay (University College Dublin)

(4) (日本)

The crux: numerical computation of

$$\delta \dot{\Psi} = \underbrace{\delta \left(g_{\alpha\beta} e_3^\beta u^\gamma \nabla_\gamma e_1^\alpha \right)}_{\delta \dot{\Psi}_1} = \underbrace{-\delta \left(g_{\alpha\beta} e_1^\beta u^\gamma \nabla_\gamma e_3^\alpha \right)}_{\delta \dot{\Psi}_2},$$

where

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The crux: numerical computation of

$$\delta \dot{\Psi} = \underbrace{\delta \left(g_{\alpha\beta} e_3^\beta u^\gamma \nabla_\gamma e_1^\alpha \right)}_{\delta \dot{\Psi}_1} = \underbrace{-\delta \left(g_{\alpha\beta} e_1^\beta u^\gamma \nabla_\gamma e_3^\alpha \right)}_{\delta \dot{\Psi}_2},$$

where

$$\delta \dot{\Psi}_1 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{33} - h_{11} \right) + c_{01} \bar{\Gamma}_{311} + c_{03} \bar{\Gamma}_{313} + \delta \Gamma_{310} + \frac{dc_{13}}{d\tau}$$

$$\delta \dot{\Psi}_2 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{11} - h_{33} \right) - c_{01} \bar{\Gamma}_{131} - c_{03} \bar{\Gamma}_{133} - \delta \Gamma_{130} - \frac{dc_{31}}{d\tau} ,$$

< □ > < 同 > < 回 > < Ξ > < Ξ

The crux: numerical computation of

$$\delta \dot{\Psi} = \underbrace{\delta \left(g_{\alpha\beta} e_3^\beta u^\gamma \nabla_\gamma e_1^\alpha \right)}_{\delta \dot{\Psi}_1} = \underbrace{-\delta \left(g_{\alpha\beta} e_1^\beta u^\gamma \nabla_\gamma e_3^\alpha \right)}_{\delta \dot{\Psi}_2},$$

where

$$\begin{split} \delta \dot{\Psi}_1 &= \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{33} - h_{11} \right) + \ c_{01} \bar{\Gamma}_{311} + \ c_{03} \bar{\Gamma}_{313} + \delta \Gamma_{310} & \underbrace{+ \frac{dc_{13}}{d\tau}}_{\text{averages to 0}} , \\ \delta \dot{\Psi}_2 &= \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{11} - h_{33} \right) - \ c_{01} \bar{\Gamma}_{131} - \ c_{03} \bar{\Gamma}_{133} - \delta \Gamma_{130} & - \frac{dc_{31}}{d\tau} , \end{split}$$

Sarp Akcay (University College Dublin)

.

< □ > < □ > < □ > < □ > < □ > < □ >

averages to 0

The crux: numerical computation of

$$\delta \dot{\Psi} = \underbrace{\delta \left(g_{\alpha\beta} e_3^\beta u^\gamma \nabla_\gamma e_1^\alpha \right)}_{\delta \dot{\Psi}_1} = \underbrace{-\delta \left(g_{\alpha\beta} e_1^\beta u^\gamma \nabla_\gamma e_3^\alpha \right)}_{\delta \dot{\Psi}_2},$$

where

 $\delta \dot{\Psi}_1 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{33} - h_{11} \right) + c_{01} \bar{\Gamma}_{311} + c_{03} \bar{\Gamma}_{313} + \delta \Gamma_{310},$

$$\delta \dot{\Psi}_2 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{11} - h_{33} \right) - c_{01} \bar{\Gamma}_{131} - c_{03} \bar{\Gamma}_{133} - \delta \Gamma_{130},$$

Missing terms: $\{c_{01}, c_{03}\} \times \text{func.}(p, e, \chi)$

Sarp Akcay (University College Dublin)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The crux: numerical computation of

$$\delta \dot{\Psi} = \underbrace{\delta \left(g_{\alpha\beta} e_3^\beta u^\gamma \nabla_\gamma e_1^\alpha \right)}_{\delta \dot{\Psi}_1} = \underbrace{-\delta \left(g_{\alpha\beta} e_1^\beta u^\gamma \nabla_\gamma e_3^\alpha \right)}_{\delta \dot{\Psi}_2},$$

where

$$\delta \dot{\Psi}_1 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{33} - h_{11} \right) + \underbrace{c_{01} \bar{\Gamma}_{311}}_{+c_{01} \bar{\gamma}_{311}} + \underbrace{c_{03} \bar{\Gamma}_{313}}_{+c_{03} \bar{\gamma}_{313}} + \delta \Gamma_{310},$$

$$\delta \dot{\Psi}_2 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{11} - h_{33} \right) - \underbrace{c_{01} \bar{\Gamma}_{131}}_{+c_{01} \bar{\gamma}_{131}} - \underbrace{c_{03} \bar{\Gamma}_{133}}_{+c_{03} \bar{\gamma}_{133}} - \delta \Gamma_{130},$$

Missing terms: $\{c_{01}, c_{03}\} \times \text{func.}(p, e, \chi)$

Sarp Akcay (University College Dublin)

イロト イポト イヨト イヨト

The crux: numerical computation of

$$\delta \dot{\Psi} = \underbrace{\delta \left(g_{\alpha\beta} e_3^\beta u^\gamma \nabla_\gamma e_1^\alpha \right)}_{\delta \dot{\Psi}_1} = \underbrace{-\delta \left(g_{\alpha\beta} e_1^\beta u^\gamma \nabla_\gamma e_3^\alpha \right)}_{\delta \dot{\Psi}_2},$$

where

$$\delta \dot{\Psi}_1 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{33} - h_{11} \right) + \underbrace{c_{01} \bar{\Gamma}_{311}}_{+c_{01} \bar{\gamma}_{311}} + \underbrace{c_{03} \bar{\Gamma}_{313}}_{+c_{03} \bar{\gamma}_{313}} + \delta \Gamma_{310},$$

$$\delta \dot{\Psi}_2 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{11} - h_{33} \right) - \underbrace{c_{01} \bar{\Gamma}_{131}}_{+c_{01} \bar{\gamma}_{131}} - \underbrace{c_{03} \bar{\Gamma}_{133}}_{+c_{03} \bar{\gamma}_{133}} - \delta \Gamma_{130},$$

Missing terms: $\{c_{01}, c_{03}\} \times \text{func.}(p, e, \chi)$

E.g.
$$c_{03}(\chi) = \text{func.}(p, e, \chi) \times \int_0^{\chi} \frac{d\tau}{d\chi'} F_{\phi}^{\text{cons}}(\chi') d\chi'$$

Sarp Akcay (University College Dublin)

Eccentric spin precession (again)

The crux: numerical computation of

$$\delta \dot{\Psi} = \underbrace{\delta \left(g_{\alpha\beta} e_3^\beta u^\gamma \nabla_\gamma e_1^\alpha \right)}_{\delta \dot{\Psi}_1} = \underbrace{-\delta \left(g_{\alpha\beta} e_1^\beta u^\gamma \nabla_\gamma e_3^\alpha \right)}_{\delta \dot{\Psi}_2},$$

where

$$\delta \dot{\Psi}_1 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{33} - h_{11} \right) + \underbrace{c_{01} \bar{\Gamma}_{311}}_{+c_{01} \bar{\gamma}_{311}} + \underbrace{c_{03} \bar{\Gamma}_{313}}_{+c_{03} \bar{\gamma}_{313}} + \delta \Gamma_{310},$$

$$\delta \dot{\Psi}_2 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{11} - h_{33} \right) - \underbrace{c_{01} \bar{\Gamma}_{131}}_{+c_{01} \bar{\gamma}_{131}} - \underbrace{c_{03} \bar{\Gamma}_{133}}_{+c_{03} \bar{\gamma}_{133}} - \delta \Gamma_{130},$$

Missing terms: $\{c_{01}, c_{03}\} \times \text{func.}(p, e, \chi)$

E.g.
$$c_{03}(\chi) = \text{func.}(p, e, \chi) \times \int_0^{\chi} \frac{d\tau}{d\chi'} \overbrace{F_{\phi}^{\text{cons}}(\chi')}^{\text{numerical}} d\chi'$$

Sarp Akcay (University College Dublin)

Eccentric spin precession (again)

19th Capra Meeting 8 / 14

The crux: numerical computation of

$$\delta \dot{\Psi} = \underbrace{\delta \left(g_{\alpha\beta} e_3^\beta u^\gamma \nabla_\gamma e_1^\alpha \right)}_{\delta \dot{\Psi}_1} = \underbrace{-\delta \left(g_{\alpha\beta} e_1^\beta u^\gamma \nabla_\gamma e_3^\alpha \right)}_{\delta \dot{\Psi}_2},$$

where

$$\delta \dot{\Psi}_1 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{33} - h_{11} \right) + \underbrace{c_{01} \bar{\Gamma}_{311}}_{+ c_{01} \bar{\gamma}_{311}} + \underbrace{c_{03} \bar{\Gamma}_{313}}_{+ c_{03} \bar{\gamma}_{313}} + \delta \Gamma_{310},$$

$$\delta \dot{\Psi}_2 = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{11} - h_{33} \right) - \underbrace{c_{01} \bar{\Gamma}_{131}}_{+c_{01} \bar{\gamma}_{131}} - \underbrace{c_{03} \bar{\Gamma}_{133}}_{+c_{03} \bar{\gamma}_{133}} - \delta \Gamma_{130},$$

 $\begin{array}{l} \text{Missing terms: } \{c_{01}, c_{03}\} \times \underbrace{\text{func.}(p, e, \chi)}_{\text{extension dependent}} & \\ \text{E.g.} \quad c_{03}(\chi) = \text{func.}(p, e, \chi) \times \int_{0}^{\chi} \frac{d\tau}{d\chi'} \underbrace{F_{\phi}^{\text{cons}}(\chi')}_{\phi} d\chi' \end{array}$

Sarp Akcay (University College Dublin)

Eccentric spin precession (again)

Numerical check: $\delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 = 0$

$$\begin{split} \delta \dot{\Psi}_1 &- \delta \dot{\Psi}_2 = 0 \\ &= \dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + c_{01} \left(\gamma + \Gamma \right)_{(13)1} + c_{03} \left(\gamma + \Gamma \right)_{(13)3} \\ &+ \delta \Gamma_{(13)0} + \frac{d}{d\tau} \left(c_{13} + c_{31} \right) \end{split}$$

(日) (四) (日) (日) (日)

Numerical check: $\delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 = 0$

$$\delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 = 0$$

= $\dot{\bar{\Psi}} (h_{33} - h_{11}) + c_{01} \underbrace{(\gamma + \Gamma)_{(13)1}}_{\bar{e}_1^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + c_{03} \underbrace{(\gamma + \Gamma)_{(13)3}}_{\bar{e}_3^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + \delta \Gamma_{(13)0} + \frac{d}{d\tau} (c_{13} + c_{31})$

イロト 不得 トイヨト イヨト 二日

Numerical check: $\delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 = 0$

$$\delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 = 0$$

= $\dot{\bar{\Psi}} (h_{33} - h_{11}) + c_{01} \underbrace{(\gamma + \Gamma)_{(13)1}}_{\bar{e}_1^{\bar{h}} \bar{\nabla}_{\bar{\rho}}(\bar{e}_3 \cdot \bar{e}_1) = 0} + c_{03} \underbrace{(\gamma + \Gamma)_{(13)3}}_{\bar{e}_3^{\bar{h}} \bar{\nabla}_{\bar{\rho}}(\bar{e}_3 \cdot \bar{e}_1) = 0} + \delta \Gamma_{(13)0} + \frac{d}{d\tau} \underbrace{(c_{13} + c_{31})}_{-h_{13}}$

イロト 不得 トイヨト イヨト 二日
$$\begin{split} \delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 &= 0 \\ &= \dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + c_{01} \underbrace{(\gamma + \Gamma)_{(13)1}}_{\bar{e}_1^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + c_{03} \underbrace{(\gamma + \Gamma)_{(13)3}}_{\bar{e}_3^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + \delta \Gamma_{(13)0} + \frac{d}{d\tau} \underbrace{(c_{13} + c_{31})}_{-h_{13}} \right) \\ &= \left[\dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + \delta \Gamma_{(13)0} - \frac{d}{d\tau} h_{13} = 0 \right] \end{split}$$

・ロト (周) (王) (王) (王)

$$\begin{split} \delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 &= 0 \\ &= \dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + c_{01} \underbrace{(\gamma + \Gamma)_{(13)1}}_{\bar{e}_1^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + c_{03} \underbrace{(\gamma + \Gamma)_{(13)3}}_{\bar{e}_3^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + \delta \Gamma_{(13)0} + \frac{d}{d\tau} \underbrace{(c_{13} + c_{31})}_{-h_{13}} \right) \\ &= \boxed{\dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + \delta \Gamma_{(13)0} - \frac{d}{d\tau} h_{13} = 0} \end{split}$$

NO h_{13} data. Since h_{13} is periodic consider

< □ > < 同 > < 回 > < 回 > < 回 >

$$\begin{split} \delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 &= 0 \\ &= \dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + c_{01} \underbrace{(\gamma + \Gamma)_{(13)1}}_{\bar{e}_1^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + c_{03} \underbrace{(\gamma + \Gamma)_{(13)3}}_{\bar{e}_3^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + \delta \Gamma_{(13)0} + \frac{d}{d\tau} \underbrace{(c_{13} + c_{31})}_{-h_{13}} \right) \\ &= \boxed{\dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + \delta \Gamma_{(13)0} - \frac{d}{d\tau} h_{13} = 0} \end{split}$$

NO h_{13} data. Since h_{13} is periodic consider

$$\delta \Psi_1 - \delta \Psi_2$$

Sarp Akcay (University College Dublin)

< □ > < 同 > < 回 > < 回 > < 回 >

$$\begin{split} \delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 &= 0 \\ = \dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + c_{01} \underbrace{(\gamma + \Gamma)_{(13)1}}_{\bar{e}_1^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + c_{03} \underbrace{(\gamma + \Gamma)_{(13)3}}_{\bar{e}_3^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + \delta \Gamma_{(13)0} + \frac{d}{d\tau} \underbrace{(c_{13} + c_{31})}_{-h_{13}} \right) \\ &= \boxed{\dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + \delta \Gamma_{(13)0} - \frac{d}{d\tau} h_{13} = 0}$$

NO h_{13} data. Since h_{13} is periodic consider $\delta \Psi = \int_{0}^{2\pi} \frac{d\bar{\Psi}}{d\chi} \left(\frac{\delta \dot{\Psi}}{\dot{\Psi}} - \frac{\delta \dot{R}}{\bar{u}^{r}}\right) d\chi$.

 $\delta \Psi_1 - \delta \Psi_2$

<ロ> <四> <四> <四> <四> <四</p>

$$\begin{split} \delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 &= 0 \\ &= \dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + c_{01} \underbrace{(\gamma + \Gamma)_{(13)1}}_{\bar{e}_1^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + c_{03} \underbrace{(\gamma + \Gamma)_{(13)3}}_{\bar{e}_3^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + \delta \Gamma_{(13)0} + \frac{d}{d\tau} \underbrace{(c_{13} + c_{31})}_{-h_{13}} \\ &= \boxed{\dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + \delta \Gamma_{(13)0} - \frac{d}{d\tau} h_{13} = 0} \end{split}$$

NO h_{13} data. Since h_{13} is periodic consider

$$\delta \Psi = \int_0^{2\pi} \frac{d\bar{\Psi}}{d\chi} \left(\frac{\delta \dot{\Psi}}{\bar{\Psi}} - \frac{\delta \dot{R}}{\bar{u}^r} \right) d\chi \ .$$

< □ > < 同 > < 回 > < 回 > < 回 >

$$\delta \Psi_1 - \delta \Psi_2 = \int \frac{d\bar{\tau}}{d\chi} (\delta \dot{\Psi}_1 - \delta \dot{\Psi}_2) d\chi$$

Sarp Akcay (University College Dublin)

$$\begin{split} \delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 &= 0 \\ &= \dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + c_{01} \underbrace{(\gamma + \Gamma)_{(13)1}}_{\bar{e}_1^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + c_{03} \underbrace{(\gamma + \Gamma)_{(13)3}}_{\bar{e}_3^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + \delta \Gamma_{(13)0} + \frac{d}{d\tau} \underbrace{(c_{13} + c_{31})}_{-h_{13}} \right) \\ &= \boxed{\dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + \delta \Gamma_{(13)0} - \frac{d}{d\tau} h_{13} = 0} \end{split}$$

NO h_{13} data. Since h_{13} is periodic consider

$$\delta\Psi_1 - \delta\Psi_2 = \int \frac{d\bar{\tau}}{d\chi} (\delta\dot{\Psi}_1 - \delta\dot{\Psi}_2) d\chi$$

=
$$\int \frac{d\bar{\tau}}{d\chi} \left(\dot{\bar{\Psi}} (h_{33} - h_{11}) + \delta\Gamma_{(13)0}\right) d\chi = 0.$$

Sarp Akcay (University College Dublin)

< □ > < 同 > < 回 > < 回 > < 回 >

$$\begin{split} \delta \dot{\Psi}_1 - \delta \dot{\Psi}_2 &= 0 \\ &= \dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + c_{01} \underbrace{(\gamma + \Gamma)_{(13)1}}_{\bar{e}_1^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + c_{03} \underbrace{(\gamma + \Gamma)_{(13)3}}_{\bar{e}_3^\beta \bar{\nabla}_\beta (\bar{e}_3 \cdot \bar{e}_1) = 0} + \delta \Gamma_{(13)0} + \frac{d}{d\tau} \underbrace{(c_{13} + c_{31})}_{-h_{13}} \right) \\ &= \boxed{\dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + \delta \Gamma_{(13)0} - \frac{d}{d\tau} h_{13} = 0} \end{split}$$

NO h_{13} data. Since h_{13} is periodic consider

$$\delta\Psi_1 - \delta\Psi_2 = \int \frac{d\bar{\tau}}{d\chi} (\delta\dot{\Psi}_1 - \delta\dot{\Psi}_2) d\chi$$

=
$$\int \frac{d\bar{\tau}}{d\chi} \left(\dot{\bar{\Psi}} (h_{33} - h_{11}) + \delta\Gamma_{(13)0}\right) d\chi = 0.$$

 \Rightarrow Integrand is zero or integrates to zero.

Sarp Akcay (University College Dublin)

< □ > < 同 > < 回 > < 回 >

Numerical check:
$$\delta \Psi_1 - \delta \Psi_2 = 0$$

 $\delta \Psi_1 - \delta \Psi_2 = \int \frac{d\bar{\tau}}{d\chi} \left(\dot{\bar{\Psi}} \left(h_{33} - h_{11} \right) + \delta \Gamma_{(13)0} \right) d\chi = 0.$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Numerical check:
$$\delta \Psi_1 - \delta \Psi_2 = 0$$

 $\delta \Psi_1 - \delta \Psi_2 = \int \underbrace{\frac{d\bar{\tau}}{d\chi} (\dot{\Psi} (h_{33} - h_{11}) + \delta \Gamma_{(13)0})}_{\text{Integrates to or } = 0?} d\chi = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

10 / 14

Sarp Akcay (University College Dublin)

19th Capra Meeting

10 / 14

 $\delta \Psi_1 - \delta \Psi_2 \lesssim \mathcal{O}(10^{-10}) \text{ for } p \in [10, 100], e \le 0.2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Data for $p = \{10, 20, 30, \dots, 100\}, e = \{0.05, 0.1, 0.15, 0.2\}$ Compare with circular-orbits

- 4 回 ト 4 ヨ ト 4 ヨ ト

Data for $p = \{10, 20, 30, \dots, 100\}, e = \{0.05, 0.1, 0.15, 0.2\}$ Compare with circular-orbits

 $\Delta\psi_{\mathsf{circ}} \neq \lim_{e \to 0} \Delta\psi$

Data for $p = \{10, 20, 30, \dots, 100\}, e = \{0.05, 0.1, 0.15, 0.2\}$ Compare with circular-orbits

$$\Delta \psi_{\rm circ} \neq \lim_{e \to 0} \Delta \psi \quad \text{e.g.}, \quad \begin{array}{ll} \Delta \psi_{\rm circ}(p=10) & = & 0.00593855 \ (\text{Dolan et al. 2013}) \\ \lim_{e \to 0} \Delta \psi(p=10,e) & = & -0.0506715 \end{array}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Data for $p = \{10, 20, 30, \dots, 100\}, e = \{0.05, 0.1, 0.15, 0.2\}$ Compare with circular-orbits

$$\Delta \psi_{\rm circ} \neq \lim_{e \to 0} \Delta \psi \quad \text{e.g.,} \quad \begin{array}{ll} \Delta \psi_{\rm circ}(p=10) &=& 0.00593855 \ (\text{Dolan et al. 2013}) \\ \lim_{e \to 0} \Delta \psi(p=10,e) &=& -0.0506715 \end{array}$$

Shown analytically+numerically that $\lim_{e \to 0} \delta \psi = \delta \psi_{\text{circ}} \quad \left(\delta \psi = -\frac{\bar{\Psi}}{\bar{\Phi}} \left(\frac{\delta \Psi}{\bar{\Psi}} - \frac{\delta \Phi}{\bar{\Phi}} \right) \right)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

11 / 14

Data for $p = \{10, 20, 30, \dots, 100\}, e = \{0.05, 0.1, 0.15, 0.2\}$ Compare with circular-orbits

$$\Delta \psi_{\rm circ} \neq \lim_{e \to 0} \Delta \psi \quad \text{e.g.,} \quad \begin{array}{ll} \Delta \psi_{\rm circ}(p=10) &=& 0.00593855 \ (\text{Dolan et al. 2013}) \\ \lim_{e \to 0} \Delta \psi(p=10,e) &=& -0.0506715 \end{array}$$

Shown analytically+numerically that $\lim_{e \to 0} \delta \psi = \delta \psi_{\text{circ}} \quad \left(\delta \psi = -\frac{\bar{\psi}}{\bar{\Phi}} \left(\frac{\delta \Psi}{\bar{\Psi}} - \frac{\delta \Phi}{\bar{\Phi}} \right) \right)$

$$\lim_{e \to 0} \Delta \psi - \Delta \psi_{\mathsf{circ}} = \frac{2(1-3x)^{1/2}(1-6x)^{5/2}}{(4-39x+86x^2)} \left(\delta k + \frac{q \ 2x}{(1-6x)^{3/2}}\right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Data for $p = \{10, 20, 30, \dots, 100\}, e = \{0.05, 0.1, 0.15, 0.2\}$ Compare with circular-orbits

$$\Delta \psi_{\rm circ} \neq \lim_{e \to 0} \Delta \psi \quad \text{e.g.,} \quad \begin{array}{ll} \Delta \psi_{\rm circ}(p=10) &=& 0.00593855 \ (\text{Dolan et al. 2013}) \\ \lim_{e \to 0} \Delta \psi(p=10,e) &=& -0.0506715 \end{array}$$

Shown analytically+numerically that $\lim_{\epsilon \to 0} \delta \psi = \delta \psi_{\rm circ}$

$$\lim_{e \to 0} \Delta \psi - \Delta \psi_{\mathsf{circ}} = \frac{2(1-3x)^{1/2}(1-6x)^{5/2}}{(4-39x+86x^2)} \left(\delta k + \frac{q \ 2x}{(1-6x)^{3/2}}\right)$$

• δk : Fractional periastron advance per T_r (Barack-Damour-Sago 2010, Le Tiec et al. 2011)

イロト イボト イヨト イヨト 二日

Data for $p = \{10, 20, 30, \dots, 100\}, e = \{0.05, 0.1, 0.15, 0.2\}$ Compare with circular-orbits

$$\Delta \psi_{\rm circ} \neq \lim_{e \to 0} \Delta \psi \quad \text{e.g.,} \quad \begin{array}{ll} \Delta \psi_{\rm circ}(p=10) &=& 0.00593855 \ (\text{Dolan et al. 2013}) \\ \lim_{e \to 0} \Delta \psi(p=10,e) &=& -0.0506715 \end{array}$$

Shown analytically+numerically that $\lim_{\epsilon \to 0} \delta \psi = \delta \psi_{\rm circ}$

$$\lim_{e \to 0} \Delta \psi - \Delta \psi_{\rm circ} = \frac{2(1-3x)^{1/2}(1-6x)^{5/2}}{(4-39x+86x^2)} \, \left(\delta k + \frac{q \ 2x}{(1-6x)^{3/2}}\right)$$

• δk : Fractional periastron advance per T_r (Barack-Damour-Sago 2010, Le Tiec et al. 2011) • $x \equiv \left[(M + \mu) \hat{\Omega}_{\phi}^{\text{circ}} \right]^{2/3}$

Data for $p = \{10, 20, 30, \dots, 100\}, e = \{0.05, 0.1, 0.15, 0.2\}$ Compare with circular-orbits

$$\Delta \psi_{\rm circ} \neq \lim_{e \to 0} \Delta \psi \quad \text{e.g.,} \quad \begin{array}{ll} \Delta \psi_{\rm circ}(p=10) &=& 0.00593855 \ (\text{Dolan et al. 2013}) \\ \lim_{e \to 0} \Delta \psi(p=10,e) &=& -0.0506715 \end{array}$$

Shown analytically+numerically that $\lim_{e \to 0} \delta \psi = \delta \psi_{\rm circ}$

$$\lim_{e \to 0} \Delta \psi - \Delta \psi_{\rm circ} = \frac{2(1-3x)^{1/2}(1-6x)^{5/2}}{(4-39x+86x^2)} \, \left(\delta k + \frac{q \ 2x}{(1-6x)^{3/2}}\right)$$

• δk : Fractional periastron advance per T_r (Barack-Damour-Sago 2010, Le Tiec et al. 2011) • $x \equiv \left[(M + \mu) \hat{\Omega}_{\phi}^{\text{circ}} \right]^{2/3}$

Difference is gauge invariant and its physical origin understood (fixing two frequencies).

Sarp Akcay (University College Dublin)

Extract the $\mathcal{O}(e^2)$ term $\sim \frac{5}{4} \frac{e^2}{p^2}$. Compare with future 1PN result.

Sarp Akcay (University College Dublin)

Eccentric spin precession (again)

19th Capra Meeting 12 / 14

Sarp Akcay (University College Dublin) Eccentric spin precession (again)

イロト イヨト イヨト イヨト 二日

• Progress since last Capra.

3

イロト イボト イヨト イヨト

- Progress since last Capra.
- Discovered missing terms.

э

A D N A B N A B N A B N

- Progress since last Capra.
- Discovered missing terms.

 $c_{01}\bar{\gamma}_{311}, c_{03}\bar{\gamma}_{313}, \text{ etc.}$

3

< □ > < 同 > < 回 > < 回 > < 回 >

- Progress since last Capra.
- Discovered missing terms. Derivative extended off worldline.

 $c_{01}\bar{\gamma}_{311}, c_{03}\bar{\gamma}_{313}, \text{ etc.}$

3

< □ > < 同 > < 回 > < 回 > < 回 >

- Progress since last Capra.
- Discovered missing terms. Derivative extended off worldline.

 $c_{01}\bar{\gamma}_{311}, c_{03}\bar{\gamma}_{313}, \text{ etc.}$

• Fixed a regularization parameter.

・ 何 ト ・ ヨ ト ・ ヨ ト

- Progress since last Capra.
- Discovered missing terms. Derivative extended off worldline.

 $c_{01}\bar{\gamma}_{311}, c_{03}\bar{\gamma}_{313}, \text{ etc.}$

• Fixed a regularization parameter.

Now:
$$h_{33}^S = h_{11}^S = h_{uu}^S$$
 and $\delta \Gamma_{130}^S = -\delta \Gamma_{310}^S$.

・ 何 ト ・ ヨ ト ・ ヨ ト

- Progress since last Capra.
- Discovered missing terms. Derivative extended off worldline.

 $c_{01}\bar{\gamma}_{311}, c_{03}\bar{\gamma}_{313}, \text{ etc.}$

• Fixed a regularization parameter.

Now:
$$h_{33}^S = h_{11}^S = h_{uu}^S$$
 and $\delta \Gamma_{130}^S = -\delta \Gamma_{310}^S$.

Resulting in: $\delta \Psi_1 - \delta \Psi_2 = 0$ (sanity check!).

- Progress since last Capra.
- Discovered missing terms. Derivative extended off worldline.

 $c_{01}\bar{\gamma}_{311}, c_{03}\bar{\gamma}_{313}, \text{ etc.}$

• Fixed a regularization parameter.

Now:
$$h_{33}^S = h_{11}^S = h_{uu}^S$$
 and $\delta \Gamma_{130}^S = -\delta \Gamma_{310}^S$.

Resulting in: $\delta \Psi_1 - \delta \Psi_2 = 0$ (sanity check!).

and:
$$\Delta \psi - \lim_{e \to 0} \Delta \psi \propto \frac{e^2}{p^2}.$$

- Progress since last Capra.
- Discovered missing terms. Derivative extended off worldline.

 $c_{01}\bar{\gamma}_{311}, c_{03}\bar{\gamma}_{313}, \text{ etc.}$

• Fixed a regularization parameter.

Now:
$$h_{33}^S = h_{11}^S = h_{uu}^S$$
 and $\delta \Gamma_{130}^S = -\delta \Gamma_{310}^S$.

Resulting in: $\delta \Psi_1 - \delta \Psi_2 = 0$ (sanity check!).

$$\begin{array}{ll} \text{and:} & \Delta\psi - \lim_{e \to 0} \Delta\psi \propto \frac{e^2}{p^2}.\\ & \text{Consistent with current PN knowledge}\\ & \text{i.e. NO } p^{-1} \text{ terms at } \mathcal{O}(e^2). \end{array}$$

Sarp Akcay (University College Dublin)

э

イロト 不得 トイヨト イヨト

• Comparison with 1PN (Alex?)

э

< □ > < 同 > < 回 > < 回 > < 回 >

- Comparison with 1PN (Alex?)
- Understand the extension of derivatives off worldline.

- Comparison with 1PN (Alex?)
- Understand the extension of derivatives off worldline.
- Improve the numerical integration routines: SSI?

- Comparison with 1PN (Alex?)
- Understand the extension of derivatives off worldline.
- Improve the numerical integration routines: SSI?
- Endpoints $\chi = 0, 2\pi$ of the integrands: removable singularities. $\epsilon/0 \rightarrow$ analytic expressions.
- Comparison with 1PN (Alex?)
- Understand the extension of derivatives off worldline.
- Improve the numerical integration routines: SSI?
- Endpoints $\chi = 0, 2\pi$ of the integrands: removable singularities. $\epsilon/0 \rightarrow$ analytic expressions.
- Cover Schwarzschild parameter space

 $0 < e \lesssim 0.5(?), \ 10 \lesssim p \lesssim 150(?)$.

- Comparison with 1PN (Alex?)
- Understand the extension of derivatives off worldline.
- Improve the numerical integration routines: SSI?
- Endpoints $\chi = 0, 2\pi$ of the integrands: removable singularities. $\epsilon/0 \rightarrow$ analytic expressions.
- Cover Schwarzschild parameter space

$$0 < e \lesssim 0.5(?), \ 10 \lesssim p \lesssim 150(?)$$

• Future: Extend the formulation to equatorial, eccentric Kerr.

- Comparison with 1PN (Alex?)
- Understand the extension of derivatives off worldline.
- Improve the numerical integration routines: SSI?
- Endpoints $\chi = 0, 2\pi$ of the integrands: removable singularities. $\epsilon/0 \rightarrow$ analytic expressions.
- Cover Schwarzschild parameter space

$$0 < e \lesssim 0.5(?), \ 10 \lesssim p \lesssim 150(?)$$
.

• Future: Extend the formulation to equatorial, eccentric Kerr. Maybe attempt a numerical calculation?

- Comparison with 1PN (Alex?)
- Understand the extension of derivatives off worldline.
- Improve the numerical integration routines: SSI?
- Endpoints $\chi = 0, 2\pi$ of the integrands: removable singularities. $\epsilon/0 \rightarrow$ analytic expressions.
- Cover Schwarzschild parameter space

$$0 < e \lesssim 0.5(?), \ 10 \lesssim p \lesssim 150(?)$$
.

- Future: Extend the formulation to equatorial, eccentric Kerr. Maybe attempt a numerical calculation?
- Eccentric, tidal gauge invariants.

Sarp Akcay (University College Dublin)